- Browse by Author
Browsing by Author "Sulaiman, Rania S."
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item The Antiangiogenic Activity of Naturally-occurring and synthetic Homoisoflavonoids from the Hyacinthaceae (sensu APGII)(American Chemical Society, 2019-04-05) Schwikkard, Sianne; Whitmore, Hannah; Sishtla, Kamakshi; Sulaiman, Rania S.; Shetty, Trupti; Basavarajappa, Halesha D.; Waller, Catherine; Alqahtani, Alaa; Frankemoelle, Lennart; Chapman, Andy; Crouch, Neil; Wetschnig, Wolfgang; Knirsch, Walter; Andriantiana, Jacky; Mas-Claret, Eduard; Langat, Moses K.; Mulholland, Dulcie; Corson, Timothy W.; Ophthalmology, School of MedicineExcessive blood vessel formation in the eye is implicated in wet age-related macular degeneration, proliferative diabetic retinopathy, neovascular glaucoma, and retinopathy of prematurity, which are major causes of blindness. Small molecule antiangiogenic drugs are strongly needed to supplement existing biologics. Homoisoflavonoids have been previously shown to have potent antiproliferative activities in endothelial cells over other cell types. Moreover, they demonstrated a strong antiangiogenic potential in vitro and in vivo in animal models of ocular neovascularization. Here, we tested the antiangiogenic activity of a group of naturally occurring homoisoflavonoids isolated from the family Hyacinthaceae and related synthetic compounds, chosen for synthesis based on structure-activity relationship observations. Several compounds showed interesting antiproliferative and antiangiogenic activities in vitro on retinal microvascular endothelial cells, a disease-relevant cell type, with the synthetic chromane, 46, showing the best activity (GI50 of 2.3 × 10-4 μM).Item Chemical Proteomics Reveals Soluble Epoxide Hydrolase as a Therapeutic Target for Ocular Neovascularization(ACS, 2018) Sulaiman, Rania S.; Park, Bomina; Sardar Pasha, Sheik Pran Babu; Si, Yubing; Kharwadkar, Rakshin; Mitter, Sayak K.; Lee, Bit; Sun, Wei; Qi, Xiaoping; Boulton, Michael E.; Meroueh, Samy; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Ophthalmology, School of MedicineThe standard-of-care therapeutics for the treatment of ocular neovascular diseases like wet age-related macular degeneration (AMD) are biologics targeting vascular endothelial growth factor signaling. There are currently no FDA approved small molecules for treating these blinding eye diseases. Therefore, therapeutic agents with novel mechanisms are critical to complement or combine with existing approaches. Here, we identified soluble epoxide hydrolase (sEH), a key enzyme for epoxy fatty acid metabolism, as a target of an antiangiogenic homoisoflavonoid, SH-11037. SH-11037 inhibits sEH in vitro and in vivo and docks to the substrate binding cleft in the sEH hydrolase domain. sEH levels and activity are up-regulated in the eyes of a choroidal neovascularization (CNV) mouse model. sEH is overexpressed in human wet AMD eyes, suggesting that sEH is relevant to neovascularization. Known sEH inhibitors delivered intraocularly suppressed CNV. Thus, by dissecting a bioactive compound’s mechanism, we identified a new chemotype for sEH inhibition and characterized sEH as a target for blocking the CNV that underlies wet AMD.Item Design, synthesis and biological evaluation of photoaffinity probes of antiangiogenic homoisoflavonoids(Elsevier, 2016-09) Lee, Bit; Sun, Wei; Lee, Hyungjun; Basavarajappa, Halesha; Sulaiman, Rania S.; Sishtla, Kamakshi; Fei, Xiang; Corson, Timothy W.; Seo, Seung-Yong; Department of Ophthalmology, IU School of MedicineA naturally occurring homoisoflavonoid, cremastranone (1) inhibited angiogenesis in vitro and in vivo. We developed an analogue SH-11037 (2) which is more potent than cremastranone in human retinal microvascular endothelial cells (HRECs) and blocks neovascularization in animal models. Despite their efficacy, the mechanism of these compounds is not yet fully known. In the course of building on a strong foundation of SAR and creating a novel chemical tool for target identification of homoisoflavonoid-binding proteins, various types of photoaffinity probes were designed and synthesized in which benzophenone and biotin were attached to homoisoflavanonoids using PEG linkers on either the C-3′ or C-7 position. Notably, the photoaffinity probes linking on the phenol group of the C-3′ position retain excellent activity of inhibiting retinal endothelial cell proliferation with up to 72 nM of GI50.Item Ferrochelatase is a therapeutic target for ocular neovascularization(Wiley, 2017) Basavarajappa, Halesha D.; Sulaiman, Rania S.; Qi, Xiaoping; Shetty, Trupti; Babu, Sardar Sheik Pran; Sishtla, Kamakshi L.; Lee, Bit; Quigley, Judith; Alkhairy, Sameerah; Briggs, Christian M.; Gupta, Kamna; Tang, Buyun; Shadmand, Mehdi; Grant, Maria B.; Boulton, Michael E.; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineOcular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization.Item The first synthesis of the antiangiogenic homoisoflavanone, cremastranone(Royal Society of Chemistry, 2014-10-21) Lee, Bit; Basavarajappa, Halesha D.; Sulaiman, Rania S.; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineAn antiangiogenic homoisoflavanone, cremastranone, was synthesized for the first time. This scalable synthesis, which includes selective demethylation, could be used to develop lead molecules to treat angiogenesis-induced eye diseases. Synthetic cremastranone inhibited the proliferation, migration and tube formation ability of human retinal microvascular endothelial cells, important steps in pathological angiogenesis.Item The First Synthesis of the Antiangiogenic Homoisoflavanone, Cremastranone(Royal Society of Chemistry, 2014) Lee, Bit; Basavarajappa, Halesha D.; Sulaiman, Rania S.; Fei, Xiang; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineAn antiangiogenic homoisoflavanone, cremastranone, was synthesized for the first time. This scalable synthesis, which includes selective demethylation, could be used to develop lead molecules to treat angiogenesis-induced eye diseases. Synthetic cremastranone inhibited the proliferation, migration and tube formation ability of human retinal microvascular endothelial cells, important steps in pathological angiogenesis.Item Kif14 overexpression accelerates murine retinoblastoma development(Wiley, 2016-10) O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S.; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineThe mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo.Item Mechanistic and therapeutic evaluation of a novel antiantiogenic small molecule(2016-05-24) Sulaiman, Rania S.; Corson, Timothy W.; Cummins, Theodore R.; Jerde, Travis J.; Lu, Tao; Boulton, Michael E.Choroidal neovascularization (CNV) is the vision-threatening characteristic of wet age-related macular degeneration (AMD), a major cause of blindness affecting almost 2 million elderly Americans. The current approved treatments target the dominant angiogenic mediator, vascular endothelial growth factor (VEGF). However, repeated injections of anti-VEGF drugs can cause ocular and systemic side effects, and about 30% of wet AMD patients are non-responsive. There is thus an unmet need to develop VEGF-independent antiangiogenic molecules to complement or combine with existing medications. I studied SH-11037, a novel homoisoflavonoid with potent and selective antiangiogenic activity against human retinal endothelial cells. Intravitreal SH- 11037 dose-dependently suppressed angiogenesis in the laser-induced CNV (LCNV) mouse model. These effects were prominent as early as 7 days post-laser treatment as measured by a novel ellipsoid quantification method of optical coherence tomography images in vivo. A supratherapeutic dose of 100 μM SH- 11037 was not associated with signs of murine ocular toxicity, and did not interfere with pre-existing retinal vasculature or retinal function. SH-11037 synergized with anti-VEGF therapy in vitro and in vivo, suggesting a VEGFindependent mechanism. By photoaffinity pulldown, I identified soluble epoxide hydrolase (sEH) as an SH-11037-binding target. sEH is a key enzyme in ω-3 and ω-6 fatty acid metabolism. sEH levels were dramatically upregulated in retinal sections from L-CNV mice and a specific sEH inhibitor, t-AUCB, significantly suppressed L-CNV lesion volume. Additionally, SH-11037 inhibited sEH enzymatic activity in vitro and in vivo in L-CNV mice. Given the role of sEH in the metabolism of docosahexaenoic acids (DHA), inhibition of sEH using small molecules like SH-11037 would enhance ocular DHA levels, with beneficial antiangiogenic and anti-inflammatory effects. SH-11037 is thus a novel sEH inhibitor, which could make it an alternative or additive therapy to existing anti- VEGF drugs for treatment of neovascular diseases in the eye and other tissues.Item Natural product inhibitors of ocular angiogenesis(ScienceDirect, 2014-12) Sulaiman, Rania S.; Basavarajappa, Halesha D.; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineNatural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable drugs with minimal side effects.Item A novel small molecule ameliorates ocular neovascularisation and synergises with anti-VEGF therapy(Nature, 2016-05-05) Sulaiman, Rania S.; Merrigan, Stephanie; Quigley, Judith; Qi, Xiaoping; Lee, Bit; Boulton, Michael E.; Kennedy, Breandán; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineOcular neovascularisation underlies blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. These diseases cause irreversible vision loss, and provide a significant health and economic burden. Biologics targeting vascular endothelial growth factor (VEGF) are the major approach for treatment. However, up to 30% of patients are non-responsive to these drugs and they are associated with ocular and systemic side effects. Therefore, there is a need for small molecule ocular angiogenesis inhibitors to complement existing therapies. We examined the safety and therapeutic potential of SH-11037, a synthetic derivative of the antiangiogenic homoisoflavonoid cremastranone, in models of ocular neovascularisation. SH-11037 dose-dependently suppressed angiogenesis in the choroidal sprouting assay ex vivo and inhibited ocular developmental angiogenesis in zebrafish larvae. Additionally, intravitreal SH-11037 (1 μM) significantly reduced choroidal neovascularisation (CNV) lesion volume in the laser-induced CNV mouse model, comparable to an anti-VEGF antibody. Moreover, SH-11037 synergised with anti-VEGF treatments in vitro and in vivo. Up to 100 μM SH-11037 was not associated with signs of ocular toxicity and did not interfere with retinal function or pre-existing retinal vasculature. SH-11037 is thus a safe and effective treatment for murine ocular neovascularisation, worthy of further mechanistic and pharmacokinetic evaluation.