- Browse by Author
Browsing by Author "Stantz, Keith M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse(Springer, 2012) Choi, Mi-Ran; Bardhan, Rizia; Stanton-Maxey, Katie J.; Badve, Sunil; Nakshatri, Harikrishna; Stantz, Keith M.; Cao, Ning; Halas, Naomi J.; Clare, Susan E.As systemic cancer therapies improve and are able to control metastatic disease outside the central nervous system, the brain is increasingly the first site of relapse. The blood–brain barrier (BBB) represents a major challenge to the delivery of therapeutics to the brain. Macrophages originating from circulating monocytes are able to infiltrate brain metastases while the BBB is intact. Here, we show that this ability can be exploited to deliver both diagnostic and therapeutic nanoparticles specifically to experimental brain metastases of breast cancer.Item An ultrasound based platform for image-guided radiotherapy in canine bladder cancer patients(Elsevier, 2019-11-15) Sick, Justin T.; Rancilio, Nicholas J.; Fulkerson, Caroline V.; Plantenga, Jeannie M.; Knapp, Deborah W.; Stantz, Keith M.; Radiology and Imaging Sciences, School of MedicineBackground and purpose: Ultrasound (US) is a non-invasive, non-radiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (RT) (inter- and intra-fraction). A comprehensive approach incorporating an in-house 3D-US system within RT is presented. This system is easier to adopt into existing treatment protocols than current US based systems, with the aim of providing millimeter intra-fraction alignment errors and sensitivity to track intra-fraction bladder movement. Materials and methods: An in-house integrated US manipulator and platform was designed to relate the computed tomographic (CT) scanner, 3D-US and linear accelerator coordinate systems. An agar-based phantom with measured speed of sound and densities consistent with tissues surrounding the bladder was rotated (0-45°) and translated (up to 55 mm) relative to the US and CT coordinate systems to validate this device. After acquiring and integrating CT and US images into the treatment planning system, US-to-US and US-to-CT images were co-registered to re-align the phantom relative to the linear accelerator. Results: Statistical errors from US-to-US registrations for various patient orientations ranged from 0.1 to 1.7 mm for x, y, and z translation components, and 0.0-1.1° for rotational components. Statistical errors from US-to-CT registrations were 0.3-1.2 mm for the x, y and z translational components and 0.1-2.5° for the rotational components. Conclusions: An ultrasound-based platform was designed, constructed and tested on a CT/US tissue-equivalent phantom to track bladder displacement with a statistical uncertainty to correct and track inter- and intra-fractional displacements of the bladder during radiation treatments.