ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Speicher, David W."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte
    (Elsevier, 2012) Bhattacharjee, Souvik; Speicher, Kaye D.; Stahelin, Robert V.; Speicher, David W.; Haldar, Kasturi; Biochemistry and Molecular Biology, School of Medicine
    Malaria parasites export ‘a secretome’ of hundreds of proteins, including major virulence determinants, from their endoplasmic reticulum (ER), past the parasite plasma and vacuolar membranes to the host erythrocyte. The export mechanism is high affinity (nanomolar) binding of a host (cell) targeting (HT) motif RxLxE/D/Q to the lipid phosphatidylinositol 3-phosphate (PI(3)P) in the ER. Cleavage of the HT motif releases the secretory protein from the ER membrane. The HT motif is thought to be the only export signal resident in an N-terminal vacuolar translocation sequence (VTS) that quantitatively targets green fluorescent protein to the erythrocyte. We have previously shown that the R to A mutation in the HT motif, abrogates VTS binding to PI(3)P (Kd > 5 μM). We now show that remarkably, the R to A mutant is exported to the host erythrocyte, for both membrane and soluble reporters, although the efficiency of export is reduced to ~ 30% of that seen with a complete VTS. Mass spectrometry indicates that the R to A mutant is cleaved at sites upstream of the HT motif. Antibodies to upstream sequences confirm that aberrantly cleaved R to A protein mutant is exported to the erythrocyte. These data suggest that export mechanisms, independent of PI(3)P as well as those dependent on PI(3)P, function together in a VTS to target parasite proteins to the host erythrocyte.
  • Loading...
    Thumbnail Image
    Item
    Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance
    (American Society of Hematology, 2018-03-15) Bhattacharjee, Souvik; Coppens, Isabelle; Mbengue, Alassane; Suresh, Niraja; Ghorbal, Mehdi; Slouka, Zdenek; Safeukui, Innocent; Tang, Hsin-Yao; Speicher, David W.; Stahelin, Robert V.; Mohandas, Narla; Haldar, Kasturi; Biochemistry and Molecular Biology, School of Medicine
    Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University