- Browse by Author
Browsing by Author "Schneider, Bryan P."
Now showing 1 - 10 of 61
Results Per Page
Sort Options
Item Analysis of the Inverse Association between Cancer and Alzheimer’s Disease: Results from the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2014-04-11) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; Nho, Kwangsik; Ramanan, Vijay K.; McDonald, Brenna C.; Shen, Li; Foroud, Tatiana M.; Schneider, Bryan P.; Saykin, Andrew J.Although a number of studies support a reciprocal inverse association between diagnoses of cancer and Alzheimer’s disease (AD), to date there has not been any systemic investigation of the neurobiological impact of or genetic risk factors underlying this effect. To facilitate this goal, this study aimed to replicate the inverse association of cancer and AD using data from the NIA Alzheimer’s Disease Neuroimaging Initiative, which includes age-matched cases and controls with information on cancer history, AD progression, neuroimaging, and genomic data. Subjects included individuals with AD (n=234), mild cognitive impairment (MCI, n=542), and healthy controls (HC, n=293). After controlling for sex, education, race/ethnicity, smoking, and apolipoprotein E (APOE) e2/3/4 allele groups, cancer history was protective against baseline AD diagnosis (p=0.042), and was associated with later age of AD onset (p=0.001). Cancer history appears to result in a cumulative protective effect; individuals with more than one cancer had a later age of AD onset compared to those with only one cancer (p=0.001). Finally, a protective effect of AD was also observed in individuals who developed incident cancer after enrolling (post-baseline visit); 20 individuals with MCI and 9 HC developed cancer, while no AD patients had subsequent cancer diagnoses (p=0.013). This supports previous research on the inverse association of cancer and AD, and importantly provides novel evidence that this effect appears to be independent of APOE, the major known genetic risk factor for AD. Future analyses will investigate the neurobiological and genetic basis of this effect.Item Analytical Validation of a Computational Method for Pharmacogenetic Genotyping from Clinical Whole Exome Sequencing(Elsevier, 2022) Ly, Reynold C.; Shugg, Tyler; Ratcliff, Ryan; Osei, Wilberforce; Lynnes, Ty C.; Pratt, Victoria M.; Schneider, Bryan P.; Radovich, Milan; Bray, Steven M.; Salisbury, Benjamin A.; Parikh, Baiju; Sahinalp, S. Cenk; Numanagić, Ibrahim; Skaar, Todd C.; Medicine, School of MedicineGermline whole exome sequencing from molecular tumor boards has the potential to be repurposed to support clinical pharmacogenomics. However, accurately calling pharmacogenomics-relevant genotypes from exome sequencing data remains challenging. Accordingly, this study assessed the analytical validity of the computational tool, Aldy, in calling pharmacogenomics-relevant genotypes from exome sequencing data for 13 major pharmacogenes. Germline DNA from whole blood was obtained for 164 subjects seen at an institutional molecular solid tumor board. All subjects had whole exome sequencing from Ashion Analytics and panel-based genotyping from an institutional pharmacogenomics laboratory. Aldy version 3.3 was operationalized on the LifeOmic Precision Health Cloud with copy number fixed to two copies per gene. Aldy results were compared with those from genotyping for 56 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, and TPMT. Read depth was >100× for all variants except CYP3A4∗22. For 75 subjects in the validation cohort, all 3393 Aldy variant calls were concordant with genotyping. Aldy calls for 736 diplotypes containing alleles assessed by both platforms were also concordant. Aldy identified additional star alleles not covered by targeted genotyping for 139 diplotypes. Aldy accurately called variants and diplotypes for 13 major pharmacogenes, except for CYP2D6 variants involving copy number variations, thus allowing repurposing of whole exome sequencing to support clinical pharmacogenomics.Item Analytical Validation of Variants to Aid in Genotype-Guided Therapy for Oncology(Elsevier, 2019) Swart, Marelize; Stansberry, Wesley M.; Pratt, Victoria M.; Medeiros, Elizabeth B.; Kiel, Patrick J.; Shen, Fei; Schneider, Bryan P.; Skaar, Todd C.; Medical and Molecular Genetics, School of MedicineThe Clinical Laboratory Improvement Amendments (CLIA) of 1988 requires that pharmacogenetic genotyping methods need to be established according to technical standards and laboratory practice guidelines before testing can be offered to patients. Testing methods for variants in ABCB1, CBR3, COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, SLC28A3, SOD2, TLR4, and TPMT were validated in a CLIA-accredited laboratory. As no known reference materials were available, DNA samples that were from Coriell Cell Repositories (Camden, NJ) were used for the analytical validation studies. Pharmacogenetic testing methods developed here were shown to be accurate and 100% analytically sensitive and specific. Other CLIA-accredited laboratories interested in offering pharmacogenetic testing for these genetic variants, related to genotype-guided therapy for oncology, could use these publicly available samples as reference materials when developing and validating new genetic tests or refining current assays.Item Anti-VEGF therapy as adjuvant therapy: clouds on the horizon?(BioMed Central, 2009-05-18) Schneider, Bryan P.; Sledge Jr, George W.; Medicine, School of MedicineAnti-angiogenic therapies have demonstrated their value in the setting of advanced cancer, and are being explored for use in micrometastatic disease. Recent preclinical studies suggest that adjuvant anti-vascular endothelial growth factor (VEGF) therapies may increase the risk of metastasis. How concerning are these preclinical studies, and should they affect our willingness to explore anti-VEGF therapy in the adjuvant setting?Item “ASSESSMENT OF CHROMOSOME INSTABILITY IN TRIPLE-NEGATIVE BREAST CANCERS USING NUCLEI HARVESTED“ASSESSMENT OF CHROMOSOME INSTABILITY IN TRIPLE-NEGATIVE BREAST CANCERS USING NUCLEI HARVESTED FROM FROZEN TISSUES” FROM FROZEN TISSUES”(Office of the Vice Chancellor for Research, 2012-04-13) Brown, M. Tony; Slee, Roger B.; Steiner, Camie M.; Radovich, Milan; Schneider, Bryan P.; Grimes, Brenda R.Chromosomal instability (CIN), defined as ongoing chromosome mis-segregation, is prevalent in the majority of solid tumors and potentially contributes to cancer progression and hazardous genetic changes. Optimization of a common laboratory technique to assess CIN in isolated nuclei will benefit basic research and possibly be useful for clinical diagnostic purposes. Preliminary studies have demonstrated a successful protocol for performing fluorescence in situ hybridization (FISH) on nuclei harvested from frozen tumor and normal breast tissues. The frozen breast tumors were of the triple-negative breast cancer (TNBC) sub-type that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor-2 (HER2). Six TNBCs analyzed to date (20-50 nuclei per tumor) exhibited chromosome instability using centromere specific probes in FISH analysis. Modal centromere number deviation (MCD)/sample was used to calculate CIN levels. Percent MCD ranged from 32-68% in TNBCs and contrasted with the normal breast tissue sample that exhibited 2% MCD. Previous FISH studies on tissue sections by others have shown that ER negative breast tumors with greater than 45% MCD had a better prognosis. Further study will be required to determine whether CIN levels (measured by MCD) can serve as a biomarker for stratifying TNBC patients into likely responders and non- responders to treatment. Chromatin immunoprecipitation (ChIP) assays performed in parallel from the same frozen tissue revealed that centromeric heterochromatin structure is altered in TNBCs and may contribute to chromosome instability. The ability to perform both FISH and ChIP analysis on frozen human breast tissue has provided a foundation for further exploration of the relationship between CIN and centromere malfunction in tumor tissues and opens up therapeutic possibilities targeting the CIN phenotype in TNBCs.Item Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial(American Medical Association, 2020-09) Radovich, Milan; Jiang, Guanglong; Hancock, Bradley A.; Chitambar, Christopher; Nanda, Rita; Falkson, Carla; Lynce, Filipa C.; Gallagher, Christopher; Isaacs, Claudine; Blaya, Marcelo; Paplomata, Elisavet; Walling, Radhika; Daily, Karen; Mahtani, Reshma; Thompson, Michael A.; Graham, Robert; Cooper, Maureen E.; Pavlick, Dean C.; Albacker, Lee A.; Gregg, Jeffrey; Solzak, Jeffrey P.; Chen, Yu-Hsiang; Bales, Casey L.; Cantor, Erica; Shen, Fei; Storniolo, Anna Maria V.; Badve, Sunil; Ballinger, Tarah J.; Chang, Chun-Li; Zhong, Yuan; Savran, Cagri; Miller, Kathy D.; Schneider, Bryan P.; Medical and Molecular Genetics, School of MedicineImportance: A significant proportion of patients with early-stage triple-negative breast cancer (TNBC) are treated with neoadjuvant chemotherapy. Sequencing of circulating tumor DNA (ctDNA) after surgery, along with enumeration of circulating tumor cells (CTCs), may be used to detect minimal residual disease and assess which patients may experience disease recurrence. Objective: To determine whether the presence of ctDNA and CTCs after neoadjuvant chemotherapy in patients with early-stage TNBC is independently associated with recurrence and clinical outcomes. Design, setting, and participants: A preplanned secondary analysis was conducted from March 26, 2014, to December 18, 2018, using data from 196 female patients in BRE12-158, a phase 2 multicenter randomized clinical trial that randomized patients with early-stage TNBC who had residual disease after neoadjuvant chemotherapy to receive postneoadjuvant genomically directed therapy vs treatment of physician choice. Patients had blood samples collected for ctDNA and CTCs at time of treatment assignment; ctDNA analysis with survival was performed for 142 patients, and CTC analysis with survival was performed for 123 patients. Median clinical follow-up was 17.2 months (range, 0.3-58.3 months). Interventions: Circulating tumor DNA was sequenced using the FoundationACT or FoundationOneLiquid Assay, and CTCs were enumerated using an epithelial cell adhesion molecule-based, positive-selection microfluidic device. Main outcomes and measures: Primary outcomes were distant disease-free survival (DDFS), disease-free survival (DFS), and overall survival (OS). Results: Among 196 female patients (mean [SD] age, 49.6 [11.1] years), detection of ctDNA was significantly associated with inferior DDFS (median DDFS, 32.5 months vs not reached; hazard ratio [HR], 2.99; 95% CI, 1.38-6.48; P = .006). At 24 months, DDFS probability was 56% for ctDNA-positive patients compared with 81% for ctDNA-negative patients. Detection of ctDNA was similarly associated with inferior DFS (HR, 2.67; 95% CI, 1.28-5.57; P = .009) and inferior OS (HR, 4.16; 95% CI,1.66-10.42; P = .002). The combination of ctDNA and CTCs provided additional information for increased sensitivity and discriminatory capacity. Patients who were ctDNA positive and CTC positive had significantly inferior DDFS compared with those who were ctDNA negative and CTC negative (median DDFS, 32.5 months vs not reached; HR, 5.29; 95% CI, 1.50-18.62; P = .009). At 24 months, DDFS probability was 52% for patients who were ctDNA positive and CTC positive compared with 89% for those who were ctDNA negative and CTC negative. Similar trends were observed for DFS (HR, 3.15; 95% CI, 1.07-9.27; P = .04) and OS (HR, 8.60; 95% CI, 1.78-41.47; P = .007). Conclusions and relevance: In this preplanned secondary analysis of a randomized clinical trial, detection of ctDNA and CTCs in patients with early-stage TNBC after neoadjuvant chemotherapy was independently associated with disease recurrence, which represents an important stratification factor for future postneoadjuvant trials.Item Association of QT interval-prolonging drugs with clinical trial eligibility in patients with advanced cancer(Frontiers Media, 2022-12-15) Rowe, Elizabeth J.; Shugg, Tyler; Ly, Reynold C.; Philips, Santosh; Rosenman, Marc B.; Callaghan, John T.; Radovich, Milan; Overholser, Brian R.; Schneider, Bryan P.; Tisdale, James E.; Skaar, Todd C.; Medicine, School of MedicineIntroduction: Drug-induced prolongation of the heart rate-corrected QT interval (QTc) is associated with increased risk for the potentially fatal arrhythmia torsades de pointes. Due to arrhythmia risk, clinical trials with cancer therapeutics often exclude patients based on thresholds for QTc prolongation. Our objective was to assess associations between prescriptions for QT-prolonging drugs and the odds of meeting cancer trial exclusionary QTc thresholds in a cohort of adults with advanced cancer. Methods: Electronic health records were retrospectively reviewed for 271 patients seen at our institutional molecular solid tumor clinic. Collected data included demographics, QTc measurements, ventricular arrhythmia-related diagnoses, and all inpatient and outpatient prescriptions. Potential associations were assessed between demographic and clinical variables, including prescriptions for QT-prolonging drugs, and QTc measurements. Results: Women had longer median QTc measurements than men (p = 0.030) and were prescribed more QT-prolonging drugs during the study (p = 0.010). In all patients, prescriptions for QT-prolonging drugs were associated with longer median and maximum QTc measurements at multiple assessed time points (i.e., for QT-prolonging drugs prescribed within 10, 30, 60, and 90 days of QTc measurements). Similarly, the number of QT-prolonging drugs prescribed was correlated with longer median and maximum QTc measurements at multiple time points. Common QTc-related exclusionary criteria were collected from a review of ClinicalTrials.gov for recent cancer clinical trials. Based on common exclusion criteria, prescriptions for QT-prolonging drugs increased the odds of trial exclusion. Conclusion: This study demonstrates that prescriptions for QT-prolonging drugs were associated with longer QTc measurements and increased odds of being excluded from cancer clinical trials.Item Bevacizumab-induced hypertension and proteinuria: a genome-wide study of more than 1000 patients(Springer Nature, 2022) Quintanilha, Julia C.F.; Wang, Jin; Sibley, Alexander B.; Jiang, Chen; Etheridge, Amy S.; Shen, Fei; Jiang, Guanglong; Mulkey, Flora; Patel, Jai N.; Hertz, Daniel L.; Dees, Elizabeth Claire; McLeod, Howard L.; Bertagnolli, Monica; Rugo, Hope; Kindler, Hedy L.; Kelly, William Kevin; Ratain, Mark J.; Kroetz, Deanna L.; Owzar, Kouros; Schneider, Bryan P.; Lin, Danyu; Innocenti, Federico; Medicine, School of MedicineBackground: Hypertension and proteinuria are common bevacizumab-induced toxicities. No validated biomarkers are available for identifying patients at risk of these toxicities. Methods: A genome-wide association study (GWAS) meta-analysis was performed in 1039 bevacizumab-treated patients of European ancestry in four clinical trials (CALGB 40502, 40503, 80303, 90401). Grade ≥2 hypertension and proteinuria were recorded (CTCAE v.3.0). Single-nucleotide polymorphism (SNP)-toxicity associations were determined using a cause-specific Cox model adjusting for age and sex. Results: The most significant SNP associated with hypertension with concordant effect in three out of the four studies (p-value <0.05 for each study) was rs6770663 (A > G) in KCNAB1, with the G allele increasing the risk of hypertension (p-value = 4.16 × 10-6). The effect of the G allele was replicated in ECOG-ACRIN E5103 in 582 patients (p-value = 0.005). The meta-analysis of all five studies for rs6770663 led to p-value = 7.73 × 10-8, close to genome-wide significance. The most significant SNP associated with proteinuria was rs339947 (C > A, between DNAH5 and TRIO), with the A allele increasing the risk of proteinuria (p-value = 1.58 × 10-7). Conclusions: The results from the largest study of bevacizumab toxicity provide new markers of drug safety for further evaluations. SNP in KCNAB1 validated in an independent dataset provides evidence toward its clinical applicability to predict bevacizumab-induced hypertension.Item A bioinformatics approach for precision medicine off-label drug drug selection among triple negative breast cancer patients(Oxford Academic, 2016-07) Cheng, Lijun; Schneider, Bryan P.; Li, Lang; Medical and Molecular Genetics, School of MedicineCancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. OBJECTIVE: The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. METHODS: In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowledge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selection in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. RESULTS: By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase 1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some additional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO), etc. Our additional analysis of target and drug selection strategy is also fully supported by the drug screening data on TNBC cell lines in the Cancer Cell Line Encyclopedia. CONCLUSIONS: The proposed bioinformatics approach lays a foundation for cancer precision medicine. It supplies much needed knowledge base for the off-label cancer drug usage in clinics.Item Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy(American Society of Clinical Oncology, 2016-03-01) Nudelman, Kelly N.H.; McDonald, Brenna C.; Wang, Yang; Smith, Dori J.; West, John D.; O'Neill, Darren P.; Zanville, Noah R.; Champion, Victoria L.; Schneider, Bryan P.; Saykin, Andrew J.; IU School of NursingPURPOSE: To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion effects with known chemotherapy-associated gray matter density decrease was also assessed to elucidate the relationship between CIPN and previously reported cancer treatment-related brain structural changes. METHODS: Patients with breast cancer treated with (n = 24) or without (n = 23) chemotherapy underwent clinical examination and brain magnetic resonance imaging at the following three time points: before treatment (baseline), 1 month after treatment completion, and 1 year after the 1-month assessment. CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity four-item sensory-specific scale. Perfusion and gray matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric analyses and tested for association with CIPN-sx in the patients who received chemotherapy. RESULTS: Patients who received chemotherapy reported significantly increased CIPN-sx from baseline to 1 month, with partial recovery by 1 year (P < .001). CIPN-sx increase from baseline to 1 month was significantly greater for patients who received chemotherapy compared with those who did not (P = .001). At 1 month, neuroimaging showed that for the group that received chemotherapy, CIPN-sx were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing (P < .001). Longitudinal magnetic resonance imaging analysis in the group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline to 1 month were also positively correlated with gray matter density change (P < .005). CONCLUSION: Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated with changes in cerebral perfusion and gray matter. The specific mechanisms warrant further investigation given the potential diagnostic and therapeutic implications.