- Browse by Author
Browsing by Author "Sahinalp, S. Cenk"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes(Springer Nature, 2018-02-26) Numanagić, Ibrahim; Malikić, Salem; Ford, Michael; Qin, Xiang; Toji, Lorraine; Radovich, Milan; Skaar, Todd C.; Pratt, Victoria M.; Berger, Bonnie; Scherer, Steve; Sahinalp, S. Cenk; Medicine, School of MedicineHigh-throughput sequencing provides the means to determine the allelic decomposition for any gene of interest-the number of copies and the exact sequence content of each copy of a gene. Although many clinically and functionally important genes are highly polymorphic and have undergone structural alterations, no high-throughput sequencing data analysis tool has yet been designed to effectively solve the full allelic decomposition problem. Here we introduce a combinatorial optimization framework that successfully resolves this challenging problem, including for genes with structural alterations. We provide an associated computational tool Aldy that performs allelic decomposition of highly polymorphic, multi-copy genes through using whole or targeted genome sequencing data. For a large diverse sequencing data set, Aldy identifies multiple rare and novel alleles for several important pharmacogenes, significantly improving upon the accuracy and utility of current genotyping assays. As more data sets become available, we expect Aldy to become an essential component of genotyping toolkits.Item Analytical Validation of a Computational Method for Pharmacogenetic Genotyping from Clinical Whole Exome Sequencing(Elsevier, 2022) Ly, Reynold C.; Shugg, Tyler; Ratcliff, Ryan; Osei, Wilberforce; Lynnes, Ty C.; Pratt, Victoria M.; Schneider, Bryan P.; Radovich, Milan; Bray, Steven M.; Salisbury, Benjamin A.; Parikh, Baiju; Sahinalp, S. Cenk; Numanagić, Ibrahim; Skaar, Todd C.; Medicine, School of MedicineGermline whole exome sequencing from molecular tumor boards has the potential to be repurposed to support clinical pharmacogenomics. However, accurately calling pharmacogenomics-relevant genotypes from exome sequencing data remains challenging. Accordingly, this study assessed the analytical validity of the computational tool, Aldy, in calling pharmacogenomics-relevant genotypes from exome sequencing data for 13 major pharmacogenes. Germline DNA from whole blood was obtained for 164 subjects seen at an institutional molecular solid tumor board. All subjects had whole exome sequencing from Ashion Analytics and panel-based genotyping from an institutional pharmacogenomics laboratory. Aldy version 3.3 was operationalized on the LifeOmic Precision Health Cloud with copy number fixed to two copies per gene. Aldy results were compared with those from genotyping for 56 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, and TPMT. Read depth was >100× for all variants except CYP3A4∗22. For 75 subjects in the validation cohort, all 3393 Aldy variant calls were concordant with genotyping. Aldy calls for 736 diplotypes containing alleles assessed by both platforms were also concordant. Aldy identified additional star alleles not covered by targeted genotyping for 139 diplotypes. Aldy accurately called variants and diplotypes for 13 major pharmacogenes, except for CYP2D6 variants involving copy number variations, thus allowing repurposing of whole exome sequencing to support clinical pharmacogenomics.Item Computational pharmacogenotype extraction from clinical next-generation sequencing(Frontiers Media, 2023-07-04) Shugg, Tyler; Ly, Reynold C.; Osei, Wilberforce; Rowe, Elizabeth J.; Granfield, Caitlin A.; Lynnes, Ty C.; Medeiros, Elizabeth B.; Hodge, Jennelle C.; Breman, Amy M.; Schneider, Bryan P.; Sahinalp, S. Cenk; Numanagić, Ibrahim; Salisbury, Benjamin A.; Bray, Steven M.; Ratcliff, Ryan; Skaar, Todd C.; Medicine, School of MedicineBackground: Next-generation sequencing (NGS), including whole genome sequencing (WGS) and whole exome sequencing (WES), is increasingly being used for clinic care. While NGS data have the potential to be repurposed to support clinical pharmacogenomics (PGx), current computational approaches have not been widely validated using clinical data. In this study, we assessed the accuracy of the Aldy computational method to extract PGx genotypes from WGS and WES data for 14 and 13 major pharmacogenes, respectively. Methods: Germline DNA was isolated from whole blood samples collected for 264 patients seen at our institutional molecular solid tumor board. DNA was used for panel-based genotyping within our institutional Clinical Laboratory Improvement Amendments- (CLIA-) certified PGx laboratory. DNA was also sent to other CLIA-certified commercial laboratories for clinical WGS or WES. Aldy v3.3 and v4.4 were used to extract PGx genotypes from these NGS data, and results were compared to the panel-based genotyping reference standard that contained 45 star allele-defining variants within CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, NUDT15, SLCO1B1, TPMT, and VKORC1. Results: Mean WGS read depth was >30x for all variant regions except for G6PD (average read depth was 29 reads), and mean WES read depth was >30x for all variant regions. For 94 patients with WGS, Aldy v3.3 diplotype calls were concordant with those from the genotyping reference standard in 99.5% of cases when excluding diplotypes with additional major star alleles not tested by targeted genotyping, ambiguous phasing, and CYP2D6 hybrid alleles. Aldy v3.3 identified 15 additional clinically actionable star alleles not covered by genotyping within CYP2B6, CYP2C19, DPYD, SLCO1B1, and NUDT15. Within the WGS cohort, Aldy v4.4 diplotype calls were concordant with those from genotyping in 99.7% of cases. When excluding patients with CYP2D6 copy number variation, all Aldy v4.4 diplotype calls except for one CYP3A4 diplotype call were concordant with genotyping for 161 patients in the WES cohort. Conclusion: Aldy v3.3 and v4.4 called diplotypes for major pharmacogenes from clinical WES and WGS data with >99% accuracy. These findings support the use of Aldy to repurpose clinical NGS data to inform clinical PGx.Item Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data(Oxford University Press, 2015-06-15) Numanagic, Ibrahim; Malikic, Salem; Pratt, Victoria M.; Skaar, Todd C.; Flockhart, David A.; Sahinalp, S. Cenk; Department of Medicine, IU School of MedicineMOTIVATION: CYP2D6 is highly polymorphic gene which encodes the (CYP2D6) enzyme, involved in the metabolism of 20-25% of all clinically prescribed drugs and other xenobiotics in the human body. CYP2D6 genotyping is recommended prior to treatment decisions involving one or more of the numerous drugs sensitive to CYP2D6 allelic composition. In this context, high-throughput sequencing (HTS) technologies provide a promising time-efficient and cost-effective alternative to currently used genotyping techniques. To achieve accurate interpretation of HTS data, however, one needs to overcome several obstacles such as high sequence similarity and genetic recombinations between CYP2D6 and evolutionarily related pseudogenes CYP2D7 and CYP2D8, high copy number variation among individuals and short read lengths generated by HTS technologies. RESULTS: In this work, we present the first algorithm to computationally infer CYP2D6 genotype at basepair resolution from HTS data. Our algorithm is able to resolve complex genotypes, including alleles that are the products of duplication, deletion and fusion events involving CYP2D6 and its evolutionarily related cousin CYP2D7. Through extensive experiments using simulated and real datasets, we show that our algorithm accurately solves this important problem with potential clinical implications.Item Structural variation and fusion detection using targeted sequencing data from circulating cell free DNA(Oxford University Press, 2019-04-23) Gawroński, Alexander R.; Lin, Yen-Yi; McConeghy, Brian; LeBihan, Stephane; Asghari, Hossein; Koçkan, Can; Orabi, Baraa; Adra, Nabil; Pili, Roberto; Collins, Colin C.; Sahinalp, S. Cenk; Hach, Faraz; Medicine, School of MedicineMOTIVATION: Cancer is a complex disease that involves rapidly evolving cells, often forming multiple distinct clones. In order to effectively understand progression of a patient-specific tumor, one needs to comprehensively sample tumor DNA at multiple time points, ideally obtained through inexpensive and minimally invasive techniques. Current sequencing technologies make the 'liquid biopsy' possible, which involves sampling a patient's blood or urine and sequencing the circulating cell free DNA (cfDNA). A certain percentage of this DNA originates from the tumor, known as circulating tumor DNA (ctDNA). The ratio of ctDNA may be extremely low in the sample, and the ctDNA may originate from multiple tumors or clones. These factors present unique challenges for applying existing tools and workflows to the analysis of ctDNA, especially in the detection of structural variations which rely on sufficient read coverage to be detectable. RESULTS: Here we introduce SViCT , a structural variation (SV) detection tool designed to handle the challenges associated with cfDNA analysis. SViCT can detect breakpoints and sequences of various structural variations including deletions, insertions, inversions, duplications and translocations. SViCT extracts discordant read pairs, one-end anchors and soft-clipped/split reads, assembles them into contigs, and re-maps contig intervals to a reference genome using an efficient k-mer indexing approach. The intervals are then joined using a combination of graph and greedy algorithms to identify specific structural variant signatures. We assessed the performance of SViCT and compared it to state-of-the-art tools using simulated cfDNA datasets with properties matching those of real cfDNA samples. The positive predictive value and sensitivity of our tool was superior to all the tested tools and reasonable performance was maintained down to the lowest dilution of 0.01% tumor DNA in simulated datasets. Additionally, SViCT was able to detect all known SVs in two real cfDNA reference datasets (at 0.6-5% ctDNA) and predict a novel structural variant in a prostate cancer cohort.