- Browse by Author
Browsing by Author "Roth, Monica J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Crystal structures of oligonucleotides including the integrase processing site of the Moloney murine leukemia virus(Oxford University Press, 2006-11-01) Montaño, Sherwin P.; Cote, Marie L.; Roth, Monica J.; Georgiadis, Millie M.; Biochemistry and Molecular Biology, School of MedicineIn the first step of retroviral integration, integrase cleaves the linear viral DNA within its long terminal repeat (LTR) immediately 3′ to the CA dinucleotide step, resulting in a reactive 3′ OH on one strand and a 5′ two base overhang on the complementary strand. In order to investigate the structural properties of the 3′ end processing site within the Moloney murine leukemia virus (MMLV) LTR d(TCTTTCATT), a host-guest crystallographic method was employed to determine the structures of four self-complementary 16 bp oligonucleotides including LTR sequences (underlined), d(TTTCATTGCAATGAAA), d(CTTTCATTAATGAAAG), d(TCTTTCATATGAAAGA) and d(CACAATGATCATTGTG), the guests, complexed with the N-terminal fragment of MMLV reverse transcriptase, the host. The structures of the LTR-containing oligonucleotides were compared to those of non-LTR oligonucleotides crystallized in the same lattice. Properties unique to the CA dinucleotide step within the LTR sequence, independent of its position from the end of the duplex, include a positive roll angle and negative slide value. This propensity for the CA dinucleotide step within the MMLV LTR sequence to adopt only positive roll angles is likely influenced by the more rigid, invariable 3′ and 5′ flanking TT dinucleotide steps and may be important for specific recognition and/or cleavage by the MMLV integrase.Item Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions(Elsevier, 2003-11-10) Villanueva, Rodrigo A.; Jonsson, Colleen B.; Jones, Jennifer; Georgiadis, Millie M.; Roth, Monica J.; Biochemistry and Molecular Biology, School of MedicineRetroviral integrases (IN) catalyze the integration of the reverse-transcribed viral DNA into the host genome, an essential process leading to virus replication. For Moloney murine leukemia virus (M-MuLV) IN, the limited solubility of the recombinant protein has restricted the development of biophysical and structural analyses. Herein, recombinant M-MuLV IN proteins, either full length or two nonoverlapping domain constructs, were purified under non-denaturing conditions from solubilized bacterial extracts by Ni2+-NTA resins. Additionally, WT IN was further purified by heparin chromatography. All of the purified proteins were shown to be active and stable. WT M-MuLV IN chromatographed with a peak corresponding with a dimer by gel filtration chromatography. In contrast, the single point mutant C209A IN migrated predominantly as a tetramer. For both proteins, fractions in equilibrium between dimers and tetramers were competent to assemble concerted two-end integrations and yielded a unique strand-transfer profile in the presence of a 28-mer U5 oligonucleotide substrate, indicative of a distinct conformation within the synaptic complex. This specific target-site selection was not observed with a shorter 20-mer U5 substrate. These studies provide the foundation for biophysical and structural analysis on M-MuLV IN and the mechanism of retroviral integration.