- Browse by Author
Browsing by Author "Rogozea, Dan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses(MDPI, 2022-10-31) Dairaghi, Jacob; Rogozea, Dan; Cadle, Rachel; Bustamante, Joseph; Moldovan, Leni; Petrache, Horia I.; Moldovan, Nicanor I.; Physics, School of ScienceThe middle ear bones (‘ossicles’) may become severely damaged due to accidents or to diseases. In these situations, the most common current treatments include replacing them with cadaver-derived ossicles, using a metal (usually titanium) prosthesis, or introducing bridges made of biocompatible ceramics. Neither of these solutions is ideal, due to the difficulty in finding or producing shape-matching replacements. However, the advent of additive manufacturing applications to biomedical problems has created the possibility of 3D-printing anatomically correct, shape- and size-personalized ossicle prostheses. To demonstrate this concept, we generated and printed several models of ossicles, as solid, porous, or soft material structures. These models were first printed with a plottable calcium phosphate/hydroxyapatite paste by extrusion on a solid support or embedded in a Carbopol hydrogel bath, followed by temperature-induced hardening. We then also printed an ossicle model with this ceramic in a porous format, followed by loading and crosslinking an alginate hydrogel within the pores, which was validated by microCT imaging. Finally, ossicle models were printed using alginate as well as a cell-containing nanocellulose-based bioink, within the supporting hydrogel bath. In selected cases, the devised workflow and the printouts were tested for repeatability. In conclusion, we demonstrate that moving beyond simplistic geometric bridges to anatomically realistic constructs is possible by 3D printing with various biocompatible materials and hydrogels, thus opening the way towards the in vitro generation of personalized middle ear prostheses for implantation.Item A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation(Frontiers, 2022-01-04) Dairaghi, Jacob; Alston, Claudia Benito; Cadle, Rachel; Rogozea, Dan; Solorio, Luis; Barco, Clark T.; Moldovan, Nicanor I.; Surgery, School of MedicineRepair of large oral bone defects such as vertical alveolar ridge augmentation could benefit from the rapidly developing additive manufacturing technology used to create personalized osteoconductive devices made from porous tricalcium phosphate/hydroxyapatite (TCP/HA)-based bioceramics. These devices can be also used as hydrogel carriers to improve their osteogenic potential. However, the TCP/HA constructs are prone to brittle fracture, therefore their use in clinical situations is difficult. As a solution, we propose the protection of this osteoconductive multi-material (herein called “core”) with a shape-matched “cover” made from biocompatible poly-ɛ-caprolactone (PCL), which is a ductile, and thus more resistant polymeric material. In this report, we present a workflow starting from patient-specific medical scan in Digital Imaging and Communications in Medicine (DICOM) format files, up to the design and 3D printing of a hydrogel-loaded porous TCP/HA core and of its corresponding PCL cover. This cover could also facilitate the anchoring of the device to the patient's defect site via fixing screws. The large, linearly aligned pores in the TCP/HA bioceramic core, their sizes, and their filling with an alginate hydrogel were analyzed by micro-CT. Moreover, we created a finite element analysis (FEA) model of this dual-function device, which permits the simulation of its mechanical behavior in various anticipated clinical situations, as well as optimization before surgery. In conclusion, we designed and 3D-printed a novel, structurally complex multi-material osteoconductive-osteoprotective device with anticipated mechanical properties suitable for large-defect oral bone regeneration.Item Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting(MDPI, 2022-04-27) Cadle, Rachel; Rogozea, Dan; Moldovan, Leni; Moldovan, Nicanor I.; Surgery, School of MedicineRecent progress in bioprinting has made possible the creation of complex 3D intestinal constructs, including vascularized villi. However, for their integration into functional units useful for experimentation or implantation, the next challenge is to endow them with a larger-scale, anatomically realistic vasculature. In general, the perfusion of bioprinted constructs has remained difficult, and the current solution is to provide them with mostly linear and simply branched channels. To address this limitation, here we demonstrated an image analysis-based workflow leading through computer-assisted design from anatomic images of rodent mesentery and colon to the actual printing of such patterns with paste and hydrogel bioinks. Moreover, we reverse-engineered the 2D intestinal image-derived designs into cylindrical objects, and 3D-printed them in a support hydrogel. These results open the path towards generation of more realistically vascularized tissue constructs for a variety of personalized medicine applications.