- Browse by Author
Browsing by Author "Qi, Jing"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Determinants of 14-3-3σ dimerization and function in drug and radiation resistance(2013-11) Li, Zhaomin; Peng, Hui; Qin, Li; Qi, Jing; Zuo, Xiaobing; Liu, Jing-Yuan; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineMany proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.Item Different Roles of TM5, TM6, and ECL3 in the Oligomerization and Function of Human ABCG2(American Chemical Society, 2012-05) Mo, Wei; Qi, Jing; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineABCG2 is a member of the ATP-binding cassette transporter superfamily, and its overexpression causes multidrug resistance (MDR) in cancer chemotherapy. ABCG2 may also protect cancer stem cells by extruding cytotoxic materials. ABCG2 has previously been shown to exist as a high-order homo-oligomer consisting of possibly 8-12 subunits, and the oligomerization domain was mapped to the C-terminal domain, including TM5, ECL3, and TM6. In this study, we further investigate this domain in detail for the role of each segment in the oligomerization and drug transport function of ABCG2 using domain swapping and site-directed mutagenesis. We found that none of the three segments (TM5, TM6, and ECL3) is essential for the oligomerization activity of ABCG2 and that any one of these three segments in the full-length context is sufficient to support ABCG2 oligomerization. While TM5 plays an important role in the drug transport function of ABCG2, TM6 and ECL3 are replaceable. Thus, each segment in the TM5-ECL3-TM6 domain plays a distinctive role in the oligomerization and function of ABCG2.Item Dynamic vs Static ABCG2 Inhibitors to Sensitize Drug Resistant Cancer Cells(Public Library of Science, 2010-12-07) Peng, Hui; Qi, Jing; Dong, Zizheng; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineHuman ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in multidrug resistance and protecting cancer stem cells. ABCG2-knockout had no apparent adverse effect on the development, biochemistry, and life of mice. Thus, ABCG2 is an interesting and promising target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and for eliminating cancer stem cells. Previously, we reported a novel two mode-acting ABCG2 inhibitor, PZ-39, that induces ABCG2 degradation in addition to inhibiting its activity. In this manuscript, we report our recent progresses in identifying two different groups of ABCG2 inhibitors with one inhibiting only ABCG2 function (static) and the other induces ABCG2 degradation in lysosome in addition to inhibiting its function (dynamic). Thus, the inhibitor-induced ABCG2 degradation may be more common than we previously anticipated and further investigation of the dynamic inhibitors that induce ABCG2 degradation may provide a more effective way of sensitizing ABCG2-mediated MDR in cancer chemotherapy.Item Effective targeting of the survivin dimerization interface with small molecule inhibitors(AACR, 2016-01) Qi, Jing; Dong, Zizheng; Liu, Jianguo; Peery, Robert C.; Zhang, Shaobo; Liu, Jingyuan; Zhang, Jian-Ting; Department of Pathology and Laboratory Medicine, IU School of MedicineMany oncoproteins are considered undruggable because they lack enzymatic activities. In this study, we present a small-molecule–based anticancer agent that acts by inhibiting dimerization of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis in cancer cells. Through a combination of computational analysis of the dimerization interface and in silico screening, we identified one compound that induced proteasome-dependent survivin degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F), which was effective in blocking the survival of multiple cancer cell lines in a low micromolar concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, and apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers novel in silico screening strategies to therapeutically target homodimeric oncogenic proteins considered undruggable.Item EIF3i Promotes Colon Oncogenesis by Regulating COX-2 Protein Synthesis and β-Catenin Activation(Nature Publishing Group, 2014-08-07) Qi, Jing; Dong, Zizheng; Liu, Jianguo; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineTranslational control of gene expression has recently been recognized as an important mechanism controlling cell proliferation and oncogenesis and it mainly occurs in the initiation step of protein synthesis that involves multiple eukaryotic initiation factors (eIFs). Many eIFs have been found to have aberrant expression in human tumors and the aberrant expression may contribute to oncogenesis. However, how these previously considered house-keeping proteins are potentially oncogenic remains elusive. In this study, we investigated the expression of eIF3i in human colon cancers, tested its contribution to colon oncogenesis, and determined the mechanism of eIF3i action in colon oncogenesis. We found that eIF3i expression was up-regulated in both human colon adenocarcinoma and adenoma polyps as well as in model inducible colon tumorigenic cell lines. Over-expression of ectopic eIF3i in intestinal epithelial cells causes oncogenesis by directly up-regulating synthesis of COX-2 protein and activates the β-catenin/TCF4 signaling pathway that mediates the oncogenic function of eIF3i. Together, we conclude that eIF3i is a proto-oncogene that drives colon oncogenesis by translationally up-regulating COX-2 and activating β-catenin signaling pathway. These findings imply that protooncogenic eIFs likely exert their tumorigenic function by regulating/altering the synthesis level of down-stream tumor suppressor or oncogenes.