- Browse by Author
Browsing by Author "Pelus, Louis M."
Now showing 1 - 10 of 38
Results Per Page
Sort Options
Item Age and Sex Divergence in Hematopoietic Radiosensitivity in Aged Mouse Models of the Hematopoietic Acute Radiation Syndrome(BioOne, 2022) Patterson, Andrea M.; Vemula, Sasidhar; Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Fisher, Alexa; Wu, Tong; Sellamuthu, Rajendran; Feng, Hailin; Katz, Barry P.; DesRosiers, Colleen M.; Pelus, Louis M.; Cox, George N.; MacVittie, Thomas J.; Orschell, Christie M.; Medicine, School of MedicineThe hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.Item Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass(Elsevier, 2019) Maupin, Kevin A.; Himes, Evan R.; Plett, Artur P.; Chua, Hui Lin; Singh, Pratibha; Ghosh, Joydeep; Mohamad, Safa F.; Abeysekera, Irushi; Fisher, Alexa; Sampson, Carol; Hong, Jung-Min; Childress, Paul; Alvarez, Marta; Srour, Edward F.; Bruzzaniti, Angela; Pelus, Louis M.; Orschell, Christie M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineOsteoblast number and activity decreases with aging, contributing to the age-associated decline of bone mass, but the mechanisms underlying changes in osteoblast activity are not well understood. Here, we show that the age-associated bone loss critically depends on impairment of the ability of megakaryocytes (MKs) to support osteoblast proliferation. Co-culture of osteoblast precursors with young MKs is known to increase osteoblast proliferation and bone formation. However, co-culture of osteoblast precursors with aged MKs resulted in significantly fewer osteoblasts compared to co-culture with young MKs, and this was associated with the downregulation of transforming growth factor beta. In addition, the ability of MKs to increase bone mass was attenuated during aging as transplantation of GATA1low/low hematopoietic donor cells (which have elevated MKs/MK precursors) from young mice resulted in an increase in bone mass of recipient mice compared to transplantation of young wild-type donor cells, whereas transplantation of GATA1low/low donor cells from old mice failed to enhance bone mass in recipient mice compared to transplantation of old wild-type donor cells. These findings suggest that the preservation or restoration of the MK-mediated induction of osteoblast proliferation during aging may hold the potential to prevent age-associated bone loss and resulting fractures.Item Aging-Related Reduced Expression of CXCR4 on Bone Marrow Mesenchymal Stromal Cells Contributes to Hematopoietic Stem and Progenitor Cell Defects(SpringerLink, 2020-08) Singh, Pratibha; Kacena, Melissa A.; Orschell, Christie M.; Pelus, Louis M.; Microbiology and Immunology, School of MedicineAging impairs the regenerative potential of hematopoietic stem cells (HSC) and skews differentiation towards the myeloid lineage. The bone marrow (BM) microenvironment has recently been suggested to influence HSC aging, however the mechanisms whereby BM stromal cells mediate this effect is unknown. Here we show that aging-associated decreased expression of CXCR4 expression on BM mesenchymal stem cells (MSC) plays a crucial role in the development of the hematopoietic stem and progenitor cells (HSPC) aging phenotype. The BM MSC from old mice was sufficient to drive a premature aging phenotype of young HSPC when cultured together ex vivo. The impaired ability of old MSC to support HSPC function is associated with reduced expression of CXCR4 on BM MSC of old mice. Deletion of the CXCR4 gene in young MSC accelerates an aging phenotype in these cells characterized by increased production of reactive oxygen species (ROS), DNA damage, senescence, and reduced proliferation. Culture of HSPC from young mice with CXCR4 deficient MSC also from young mice led to a premature aging phenotype in the young HSPC, as evidenced by reduced hematopoietic regeneration and enhanced myeloid differentiation. Mechanistically, CXCR4 signaling prevents BM MSC dysfunction by suppressing oxidative stress, as treatment of old or CXCR4 deficient MSC with N-acetyl-L-cysteine (NAC), improved their niche supporting activity, and attenuated the HSPC aging phenotype. Our studies suggest that age-associated reduction in CXCR4 expression on BM MSC impairs hematopoietic niche activity with increased ROS production, driving an HSC aging phenotype. Thus, modulation of the SDF-1/CXCR4 axis in MSC may lead to novel interventions to alleviate the age-associated decline in immune/hematopoietic function.Item Alterations to maternal cortical and trabecular bone in multiparous middle-aged mice(Hylonome, 2017-11) Gu, Alex; Sellamuthu, Rajendran; Himes, Evan; Childress, Paul J.; Pelus, Louis M.; Orschell, Christie M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineObjectives: During the reproductive cycle, altered calcium homeostasis is observed due to variable demand for mineral requirements. This results in increased bone resorption during the time period leading up to parturition and subsequent lactation. During lactation, women will lose 1-3% of bone mineral density per month, which is comparable to the loss experienced on an annual basis post-menopausal. The purpose of this study was to determine the effect of parity on bone formation in middle-aged mice. Methods: Mice were mated and grouped by number of parity and compared with age matched nulliparous controls. Measurements were taken of femoral trabecular and cortical bone. Calcium, protein and alkaline phosphatase levels were also measured. Results: An increase in trabecular bone mineral density was observed when comparing mice that had undergone parity once to the nulliparous control. An overall decrease in trabecular bone mineral density was observed as parity increased from 1 to 5 pregnancies. No alteration was seen in cortical bone formation. No difference was observed when calcium, protein and alkaline phosphatase levels were assessed. Conclusions: This study demonstrates that number of parity has an impact on trabecular bone formation in middle-aged mice, with substantial changes in bone density seen among the parous groups.Item Bleeding the laboratory mouse: Not all methods are equal(Elsevier, 2016-02) Hoggatt, Jonathan; Hoggatt, Amber F.; Tate, Tiffany A.; Fortman, Jeffrey; Pelus, Louis M.; Microbiology and Immunology, School of MedicineThe laboratory mouse is the model most frequently used in hematologic studies and assessment of blood parameters across a broad range of disciplines. Often, analysis of blood occurs in a nonterminal manner. However, the small body size of the mouse limits collection based on volume, frequency, and accessible sites. Commonly used sites in the mouse include the retro-orbital sinus, facial vein, tail vein, saphenous vein, and heart. The method of blood acquisition varies considerably across laboratories and is often not reported in detail. In this study, we report significant alterations in blood parameters, particularly of total white blood cells, specific populations of dendritic cells and myeloid-derived suppressor cells, and hematopoietic progenitor cells, as a result of site and manner of sampling. Intriguingly, warming of mice prior to tail bleeding was found to significantly alter blood values. Our findings suggest that the same method should be used across an entire study, that mice should be warmed prior to tail bleeds to make levels uniform, and that accurate description of bleeding methods in publications should be provided to allow for interpretation of comparative reports and inter- and intralaboratory experimental variability.Item Cardiac and Renal Delayed Effects of Acute Radiation Exposure: Organ Differences in Vasculopathy, Inflammation, Senescence and Oxidative Balance(Radiation Research Society, 2019-05) Unthank, Joseph L.; Ortiz, Miguel; Trivedi, Hina; Pelus, Louis M.; Sampson, Carol H.; Sellamuthu, Rajendran; Fisher, Alexa; Chua, Hui Lin; Plett, Artur; Orschel, Christie M.; Cohen, Eric P.; Miller, Steven J.; Surgery, School of MedicineWe have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.Item CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche(American Society of Hematology, 2014-07-24) Chitteti, Brahmananda Reddy; Kobayashi, Michihiro; Cheng, Yinghua; Zhang, Huajia; Poteat, Bradley A.; Broxmeyer, Hal E.; Pelus, Louis M.; Hanenberg, Helmut; Zollman, Amy; Kamocka, Malgorzata M.; Carlesso, Nadia; Cardoso, Angelo A.; Kacena, Melissa A.; Srour, Edward F.; Department of Medicine, IU School of MedicineWe previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166(-) cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.Item CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation(Oxford University Press, 2020-07) Singh, Pratibha; Mohammad, Khalid S.; Pelus, Louis M.; Microbiology and Immunology, School of MedicineThe bone marrow (BM) microenvironment/niche plays a key role in regulating hematopoietic stem and progenitor cell (HSPC) activities; however, mechanisms regulating niche cell function are not well understood. In this study, we show that niche intrinsic expression of the CXCR4 chemokine receptor critically regulates HSPC maintenance during steady state, and promotes early hematopoietic regeneration after myeloablative irradiation. At steady state, chimeric mice with wild-type (WT) HSPC and marrow stroma that lack CXCR4 show decreased HSPC quiescence, and their repopulation capacity was markedly reduced. Mesenchymal stromal cells (MSC) were significantly reduced in the BM of CXCR4 deficient mice, which was accompanied by decreased levels of the HSPC supporting factors stromal cell-derived factor-1 (SDF-1) and stem cell factor (SCF). CXCR4 also plays a crucial role in survival and restoration of BM stromal cells after myeloablative irradiation, where the loss of BM stromal cells was more severe in CXCR4-deficient mice compared to WT mice. In addition, transplantation of WT donor HSPC into CXCR4-deficient recipient mice demonstrated reduced HSPC homing and early hematopoietic reconstitution. We found that CXCR4 signaling attenuates irradiation-induced BM stromal cell loss by upregulating the expression of the antiapoptotic protein Survivin via the PI3K pathway. Our study suggests that SDF-1-CXCR4 signaling in the stromal microenvironment cells plays a crucial role in maintenance of HSPCs during homeostasis, and promotes niche regeneration and early hematopoietic reconstitution after transplantation. Modulation of CXCR4 signaling in the HSPC microenvironment could be a means to enhance hematopoietic recovery after clinical hematopoietic cell transplantation.Item Defining the mechanism of prostaglandin E₂-enhanced hematopoietic stem and progenitor cell homing(2014-04-02) Speth, Jennifer M.; Pelus, Louis M.; Broxmeyer, Hal E.; Harrington, Maureen A.; Ivan, Mircea; Srour, Edward F.Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a number of hematological disorders. However, to be effective, transplanted HSCs must efficiently “home” to supportive niches within the bone marrow. Limited HSC number and poor function are complications of transplant in some circumstances, and can lead to delayed engraftment and immune reconstitution, or in some cases, bone marrow failure. Enhancing HSC homing is a strategy to improve stem cell transplantation efficiency. We have previously shown that ex vivo treatment of mouse or human HSCs with 16-16 dimethyl PGE2 (dmPGE2) increases their bone marrow homing efficiency and engraftment, resulting in part from upregulation of surface CXCR4 expression. We now show that pulse-treatment of mouse or human HSPCs with dmPGE2 stabilizes HIF1α in HSPCs, and that similar treatment with the hypoxia mimetic DMOG produces analogous effects to dmPGE2 on HSPC CXCR4 expression and homing. This suggests that HIF1α is responsible for PGE2’s enhancing effects on HSPCs. Pharmacological inhibition of HIF1α stabilization in vitro with Sodium Nitroprusside (SNP), confirms the requirement of HIF1α for dmPGE2-enhanced migration and CXCR4 upregulation. Additionally, we confirm the requirement for HIF1α in dmPGE2-enhanced in vivo homing using a conditional knockout mouse model of HIF1α gene deletion. Finally, we validate that the hypoxia response element located 1.3kb from the transcriptional start site within the CXCR4 promoter is required for enhanced CXCR4 expression after PGE2 treatment. Interestingly, we also observe an increase in the small GTPase Rac1 after dmPGE2 treatment, as well as a defect in PGE2-enhanced migration and CXCR4 expression in Rac1 knockout HSPCs. Using state-of-the-art imaging technology we, confirm an increase in Rac1 and CXCR4 colocalization after dmPGE2 treatment that likely explains enhanced sensitivity of PGE2-treated HSPCs to SDF-1. Taken together, these results define a precise mechanism through which ex vivo pulse treatment of HSPC with dmPGE2 enhances HSPC function through alterations in cell motility and homing, and describe a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.Item Eicosanoid Regulation of Hematopoietic Stem and Progenitor Cell Function(2010-07-21T19:13:29Z) Hoggatt, Jonathan G.; Pelus, Louis M.; Broxmeyer, Hal E.; Clapp, D. Wade; Srour, EdwardAdult hematopoietic stem cells (HSC) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment or self-renewal. We have demonstrated that mouse and human HSC express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSC to PGE2 enhances their homing, survival and proliferation, resulting in increased long-term repopulating cell and competitive repopulating unit (CRU) frequency. HSC pulsed with PGE2 are more competitive, as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon multiple serial transplantations, with full multi-lineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression and enhances their migration to SDF-1α in vitro and homing to bone marrow in vivo and stimulates HSC entry into and progression through cell cycle. In addition, PGE2 enhances HSC survival, associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. While PGE2 pulse of HSC promotes HSC self-renewal, blockade of PGE2 biosynthesis with non-steroidal anti-inflammatory drugs (NSAIDs) results in expansion of bone marrow hematopoietic progenitor cells (HPC). We co-administered NSAIDs along with the mobilizing agent granulocyte-colony stimulating factor (G-CSF) and evaluations of limiting dilution transplants, assays monitoring neutrophil and platelet recoveries, and secondary transplantations, clearly indicate that NSAIDs facilitate mobilization of a hematopoietic graft with superior functional activity compared to the graft mobilized by G-CSF alone. Enhanced mobilization has also been confirmed in baboons mobilized with G-CSF and a NSAID. Increases in mobilization are the result of a reduction of signaling through the PGE2 receptor EP4, which results in marrow expansion and reduction in the osteoblastic HSC niche. We also identify a new role for cannabinoids, an eicosanoid with opposing functions to PGE2, in hematopoietic mobilization. Additionally, we demonstrate increased survival in lethally irradiated mice treated with PGE2, NSAIDs, or the hypoxia mimetic cobalt chloride. Our results define novel mechanisms of action whereby eicosanoids regulate HSC and HPC function, and characterize novel translational strategies for hematopoietic therapies.