Eicosanoid Regulation of Hematopoietic Stem and Progenitor Cell Function

Date
2010-07-21T19:13:29Z
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2010
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Adult hematopoietic stem cells (HSC) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment or self-renewal. We have demonstrated that mouse and human HSC express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSC to PGE2 enhances their homing, survival and proliferation, resulting in increased long-term repopulating cell and competitive repopulating unit (CRU) frequency. HSC pulsed with PGE2 are more competitive, as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon multiple serial transplantations, with full multi-lineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression and enhances their migration to SDF-1α in vitro and homing to bone marrow in vivo and stimulates HSC entry into and progression through cell cycle. In addition, PGE2 enhances HSC survival, associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. While PGE2 pulse of HSC promotes HSC self-renewal, blockade of PGE2 biosynthesis with non-steroidal anti-inflammatory drugs (NSAIDs) results in expansion of bone marrow hematopoietic progenitor cells (HPC). We co-administered NSAIDs along with the mobilizing agent granulocyte-colony stimulating factor (G-CSF) and evaluations of limiting dilution transplants, assays monitoring neutrophil and platelet recoveries, and secondary transplantations, clearly indicate that NSAIDs facilitate mobilization of a hematopoietic graft with superior functional activity compared to the graft mobilized by G-CSF alone. Enhanced mobilization has also been confirmed in baboons mobilized with G-CSF and a NSAID. Increases in mobilization are the result of a reduction of signaling through the PGE2 receptor EP4, which results in marrow expansion and reduction in the osteoblastic HSC niche. We also identify a new role for cannabinoids, an eicosanoid with opposing functions to PGE2, in hematopoietic mobilization. Additionally, we demonstrate increased survival in lethally irradiated mice treated with PGE2, NSAIDs, or the hypoxia mimetic cobalt chloride. Our results define novel mechanisms of action whereby eicosanoids regulate HSC and HPC function, and characterize novel translational strategies for hematopoietic therapies.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}