- Browse by Author
Browsing by Author "Onyango, David O."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item BASE EXCISION REPAIR APURINIC/APYRIMIDINIC ENDONUCLEASES IN APICOMPLEXAN PARASITE TOXOPLASMA GONDII(2012-03-19) Onyango, David O.; Sullivan, William J., Jr.; Chou, Kai-Ming; Georgiadis, Millie M.; Queener, Sherry F.; Vasko, Michael R.Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. Toxoplasma infection is a serious threat to immunocompromised individuals such as AIDS patients and organ transplant recipients. Side effects associated with current drug treatment calls for identification of new drug targets. DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen species produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host immune response. Most of the oxidative DNA damage is repaired through the base excision repair (BER) pathway, of which, the apurinic /apyrimidinic (AP) endonucleases are the rate limiting enzymes. Toxoplasma possesses two different AP endonucleases. The first, TgAPE, is a magnesium-dependent homologue of the human APE1 (hAPE1), but considerably divergent from hAPE1. The second, TgAPN, is a magnesium-independent homologue of yeast (Saccharomyces cerevisiae) APN1 and is not present in mammals. We have expressed and purified recombinant versions of TgAPE and TgAPN in E. coli and shown AP endonuclease activity. Our data shows that TgAPN is the more abundant AP endonuclease and confers protection against a DNA damaging agent when over-expressed in Toxoplasma tachyzoites. We also generated TgAPN knockdown Toxoplasma tachyzoites to establish that TgAPN is important for parasite protection against DNA damage. We have also identified pharmacological inhibitors of TgAPN in a high-throughput screen. The lead compound inhibits Toxoplasma replication at concentrations that do not have overt toxicity to the host cells. The importance of TgAPN in parasite physiology and the fact that humans lack APN1 makes TgAPN a promising candidate for drug development to treat toxoplasmosis.Item Base excision repair apurinic/apyrimidinic endonucleases in apicomplexan parasite Toxoplasma gondii(2011-05) Onyango, David O.; Naguleswaran, Arunasalam; Delaplane, Sarah; Reed, April; Kelley, Mark R.; Georgiadis, Millie M.; Sullivan, William J., Jr.DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear, processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that T. gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis.Item Toxoplasma H2A Variants Reveal Novel Insights into Nucleosome Composition and Functions for this Histone Family(Elsevier, 2009) Dalmasso, Maria C.; Onyango, David O.; Naguleswaran, Arunasalam; Sullivan, William J., Jr.; Angel, Sergio O.; Pharmacology and Toxicology, School of MedicineToxoplasma gondii is an obligate intracellular parasite. Toxoplasmosis is incurable because of its ability to differentiate from the rapidly replicating tachyzoite stage into a latent cyst form (bradyzoite stage). Gene regulation pertinent to Toxoplasma differentiation involves histone modification, but very little is known about the histone proteins in this early branching eukaryote. Here we report the characterization of three H2A histones, a canonical H2A1 and variants H2AX and H2AZ. H2AZ is the minor parasite H2A member. H2A1 and H2AX both have an SQ motif, but only H2AX has a complete SQ(E/D)φ (φ denotes a hydrophobic residue) known to be phosphorylated in response to DNA damage. We also show that a novel H2B variant interacts with H2AZ and H2A1 but not with H2AX. Chromatin immunoprecipitation (ChIP) revealed that H2AZ and H2Bv are enriched at active genes while H2AX is enriched at repressed genes as well as the silent TgIRE repeat element. During DNA damage, we detected an increase in H2AX phosphorylation as well as increases in h2a1 and h2ax transcription. We also found that h2ax expression, but not h2a1 and h2az, increases in bradyzoites generated in vitro. Similar analysis performed on mature bradyzoites generated in vivo, which are arrested in G0, showed that h2az and h2ax are actively expressed and h2a1 is not, consistent with the idea that h2a1 is the canonical histone orthologue in the parasite. The increase of H2AX, which localizes to silenced areas during bradyzoite differentiation, is consistent with the quiescent nature of this life cycle stage. Our results indicate that the early-branching eukaryotic parasite Toxoplasma contains nucleosomes of novel composition, which is likely to impact multiple facets of parasite biology, including the clinically important process of bradyzoite differentiation.