- Browse by Author
Browsing by Author "Nicol, Grant D."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies(Society for Neuroscience, 1998-08-15) Lopshire, John C.; Nicol, Grant D.; Pharmacology and Toxicology, School of MedicineTreatment with proinflammatory prostaglandin E2 (PGE2) produced a transient sensitization of whole-cell currents elicited by the vanilloid capsaicin. The intracellular signaling pathways that mediate the initiation of this PGE2-induced sensitization of the capsaicin-elicited current in rat sensory neurons are not well established. Treatment with either forskolin (100 nM to 10 microM) or membrane-permeant analogs of cAMP, 8-bromo-cAMP (8-Br-cAMP) and chlorphenylthio-cAMP (10 microM to 1 mM), transiently sensitized neuronal responses elicited by capsaicin in a manner analogous to that produced by PGE2. The duration of sensitization was lengthened with increasing concentrations of forskolin; however, higher concentrations of 8-Br-cAMP or chlorphenylthio-cAMP led to a shortening of sensitization. The inactive analog of forskolin, dideoxy-forskolin, had no effect on capsaicin responses. Inclusion of the inhibitor of protein kinase A in the recording pipette completely suppressed the sensitization produced by PGE2 or forskolin. In recordings from membrane patches in the cell-attached configuration, the bath application of capsaicin evoked single-channel currents in which the level of channel activity was concentration-dependent and had an EC50 of 1.4 microM. These single-channel currents evoked by capsaicin exhibited an apparent reversal potential of +4 mV and were blocked by the capsaicin antagonist capsazepine. Exposure of the sensory neuron to either PGE2 or forskolin produced a large and transient increase in the mean channel activity (NPo) elicited by capsaicin, although the unitary conductance remained unaltered. Taken together, these observations suggest that modulation of the capsaicin-gated channel by the cAMP-protein kinase A signaling pathway enhanced the gating of these channels and consequently resulted in the sensitization of the whole-cell currents.Item Electrophysiological and Pharmacological Properties of the Neuronal Voltage-gated Sodium Channel Subtype Nav1.7(2007-12) Sheets, Patrick L.; Cummins, Theodore R.; Nicol, Grant D.; Oxford, Gerry S.; Vasko, Michael R.; Schild, John H.Voltage-gated sodium channels (VGSCs) are transmembrane proteins responsible for the initiation of action potentials in excitable tissues by selectively allowing Na+ to flow through the cell membrane. VGSC subtype Nav1.7 is highly expressed in nociceptive (pain-sensing) neurons. It has recently been shown that individuals lacking the Nav1.7 subtype do not experience pain but otherwise function normally. In addition, dysfunction of Nav1.7 caused by point mutations in the channel is involved in two inherited pain disorders, primary erythromelalgia (PE) and paroxysmal extreme pain disorder (PEPD). This indicates Nav1.7 is a very important component in nociception. The aims of this dissertation were to 1) investigate if the antipsychotic drug, trifluoperazine (TFP), could modulate Nav1.7 current; 2) examine changes in Nav1.7 properties produced by the PE mutation N395K including sensitivity to the local anesthetic (LA), lidocaine; and 3) determine how different inactivated conformations of Nav1.7 affect lidocaine inhibition on the channel using PEPD mutations (I1461T and T1464I) that alter transitions between the different inactivated configurations of Nav1.7. Standard whole-cell electrophysiology was used to determine electrophysiological and pharmacological changes in WT and mutant sodium currents. Results from this dissertation demonstrate 1) TFP inhibits Nav1.7 channels through the LA interaction site; 2) the N395K mutation alters electrophysiological properties of Nav1.7 and decreases channel sensitivity to the local anesthetic lidocaine; and 3) lidocaine stabilizes Nav1.7 in a configuration that decreases transition to the slow inactivated state of the channel. Overall, this dissertation answers important questions regarding the pharmacology of Nav1.7 and provides insight into the changes in Nav1.7 channel properties caused by point mutations that may contribute to abnormal pain sensations. The results of this dissertation on the function and pharmacology of the Nav1.7 channel are crucial to the understanding of pain pathophysiology and will provide insight for the advancement of pain management therapies.Item Epac activation sensitizes rat sensory neurons through activation of Ras(Elsevier, 2016-01) Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.; Department of Pharmacology and Toxicology, IU School of MedicineGuanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization.Item Functional contributions of a sex-specific population of myelinated aortic baroreceptors in rat and their changes following ovariectomy(2014) Santa Cruz Chavez, Grace C.; Schild, John H.; Nicol, Grant D.; Oxford, Gerry S.; Rusyniak, Daniel E.; Vasko, Michael R.Gender differences in the basal function of autonomic cardiovascular control are well documented. Consistent baroreflex (BRx) studies suggest that women have higher tonic parasympathetic cardiac activation compared to men. Later in life and concomitant with menopause, a significant reduction in the capacity of the BRx in females increases their risk to develop hypertension, even exceeding that of age-matched males. Loss of sex hormones is but one factor. In female rats, we previously identified a distinct myelinated baroreceptor (BR) neuronal phenotype termed Ah-type, which exhibits functional dynamics and ionic currents that are a mix of those observed in barosensory afferents functionally identified as myelinated A-type or unmyelinated C-type. Interestingly, Ah-type afferents constitute nearly 50% of the total population of myelinated aortic BR in female but less than 2% in male rat. We hypothesized that an afferent basis for sexual dimorphism in BRx function exists. Specifically, we investigated the potential functional impact Ah-type afferents have upon the aortic BRx and what changes, if any, loss of sex hormones through ovariectomy brings upon such functions. We assessed electrophysiological and reflexogenic differences associated with the left aortic depressor nerve (ADN) from adult male, female, and ovariectomized female (OVX) Sprague-Dawley rats. Our results revealed sexually dimorphic conduction velocity (CV) profiles. A distinct, slower myelinated fiber volley was apparent in compound action potential (CAP) recordings from female aortic BR fibers, with an amplitude and CV not observed in males. Subsequent BRx studies demonstrated that females exhibited significantly greater BRx responses compared to males at myelinated-specific intensities. Ovariectomy induced an increased overall temporal dispersion in the CAP of OVX females that may have contributed to their attenuated BRx responses. Interestingly, the most significant changes in depressor dynamics occurred at electrical thresholds and frequencies most closely aligned with Ah-type BR fibers. Collectively, we provide evidence that, in females, two anatomically distinct myelinated afferent pathways contribute to the integrated BRx function, whereas in males only one exists. These functional differences may partly account for the enhanced control of blood pressure in females. Furthermore, Ah-type afferents may provide a neuromodulatory pathway uniquely associated with the hormonal regulation of BRx function.Item GATING OF THE SENSORY NEURONAL VOLTAGE-GATED SODIUM CHANNEL NAv1.7: ANALYSIS OF THE ROLE OF D3 AND D4 / S4-S5 LINKERS IN TRANSITION TO AN INACTIVATED STATE(2010-04-01T15:56:49Z) Jarecki, Brian W.; Cummins, Theodore R.; Nicol, Grant D.; Oxford, G. S.; Hudmon, Andrew; Schild, John H.Voltage-gated sodium channels (VGSCs) are dynamic membrane-spanning proteins crucial for determining the electrical excitability in nerve and muscle. VGSCs transition, or gate, between opened, closed, and inactivated states, in response to changes in transmembrane potential. Altered VGSC gating can affect electrical communication and is implicated in numerous channelopathies. Nav1.7, a VGSC isoform highly expressed in the peripheral nervous system, plays a unique role in pain perception as evidenced by single point missense mutations causing a spectrum of pain syndromes (inherited erythromelalgia; IEM and paroxysmal extreme pain disorder; PEPD) and nonsense mutations resulting in human insensitivity to pain (CIP). These studies indicate Nav1.7 is critical in pain transduction and, as such, structural perturbations to Nav1.7 affecting conformational stability and response to changes in transmembrane potential have the potential to cause pain. Therefore, the aims of this dissertation were to (1) examine the effects of PEPD mutations on the voltage-dependent properties Nav1.7; (2) investigate the effects Nav1.7 alternative splicing has on the impact of IEM and PEPD mutations; (3) evaluate the effects channelopathies, resulting from slowed inactivation, have on modulating an unusual type of sodium current that flows during membrane repolarization; and (4) determine the structural components involved in stabilizing Nav1.7 inactivation. Standard patch-clamp electrophysiology was used to study changes in channel properties. Results from this dissertation demonstrate that (1) PEPD mutations significantly shift the voltage-dependent properties of Nav1.7 channels, destabilize an inactivated state in a residue specific manner, and render nociceptive neurons hyperexcitable; (2) alternative splicing can functionally impact PEPD; (3) channelopathies, resulting from slowed inactivation in neuronal and muscle VGSC isoforms, increase an unusual sodium conductance that flows during repolarization; and (4) specific residues located in distinct regions of Nav1.7 serve as docking sites to stabilize inactivation at different membrane potentials. Overall, this dissertation answers key questions regarding the molecular mechanics required during inactivation and the biophysical consequences of Nav1.7 mutations implicated in painful disorders. The results of this dissertation are important for a more detailed understanding of pain perception and validate the applicability of studying Nav1.7 for discovery of therapeutic targets for treatment of pain. – Theodore R. Cummins, ChairItem Increased Resurgent Sodium Currents (INaR) in Inherited and Acquired Disorders of Excitability(2012-08-07) Piekarz, Andrew D.; Cummins, Theodore R.; Nicol, Grant D.; Vasko, Michael R.; Hudmon, Andrew; Khanna, RajeshVoltage-gated sodium channels (VGSCs) are dynamic membrane spanning proteins which mediate the rapid influx of Na+ during the upstroke of the action potential (AP). In addition to the large inward Na+ currents responsible for the upstroke of the AP, some VGSC isoforms produce smaller, subthreshold Na+ currents, which can influence the excitable properties of neurons. An example of such a subthreshold current is resurgent Na+ current (INaR). These unusual currents are active during repolarization of the membrane potential, where the channel is normally refractory to activity. INaR exhibit slow gating kinetics and unusual voltage-dependence derived from a novel mechanism of channel inactivation which allows the channel to recover through an open configuration resulting in membrane depolarization early in the falling phase of the AP, ultra-fast re-priming of channels, and multiple AP spikes. Although originally identified in fast spiking central nervous system (CNS) neurons, INaR has recently been observed in a subpopulation of peripheral dorsal root ganglion (DRG) neurons. Because INaR is believed to contribute to spontaneous and high frequency firing of APs, I have hypothesized that increased INaR may contribute to ectopic AP firing associated with inherited and acquired disorders of excitability. Specifically, this dissertation explores the mechanisms which underlie the electrogenesis of INaR in DRG neurons and determines whether the biophysical properties of these unique currents were altered by mutations that cause inherited muscle and neuronal channelopathies or in an experimental model of nerve injury. The results demonstrate that (1) multiple Na+ channel isoforms are capable of producing INaR in DRG neurons, including NaV1.3, NaV1.6, and NaV1.7, (2) inherited muscle and neuronal channelopathIy mutations that slow the rate of channel inactivation increase INaR amplitude, (3) temperature sensitive INaR produced by select skeletal muscle channelopthy mutations may contribute to the triggering of cold-induced myotonia, and (4) INaR amplitude and distribution is significantly increased two weeks post contusive spinal cord injury (SCI). Taken together, results from this dissertation provide foundational knowledge of the properties and mechanism of INaR in DRG neurons and indicates that increased INaR likely contributes to the enhanced membrane excitability associated with multiple inherited and acquired disorders of excitability.Item Mechanisms of the downregulation of prostaglandin E₂-activated protein kinase A after chronic exposure to nerve growth factor or prostaglandin E₂(2013-10-07) Malty, Ramy Refaat Habashy; Vasko, Michael R.; Brustovetsky, Nickolay; Cummins, Theodore R.; Hudmon, Andy; Nicol, Grant D.Chronic inflammatory disorders are characterized by an increase in excitability of small diameter sensory neurons located in dorsal root ganglia (DRGs). This sensitization of neurons is a mechanism for chronic inflammatory pain and available therapies have poor efficacy and severe adverse effects when used chronically. Prostaglandin E₂ (PGE₂) is an inflammatory mediator that plays an important role in sensitization by activating G-protein coupled receptors (GPCRs) known as E-series prostaglandin receptors (EPs) coupled to the protein kinase A (PKA) pathway. EPs are known to downregulate upon prolonged exposure to PGE₂ or in chronic inflammation, however, sensitization persists and the mechanism for this is unknown. I hypothesized that persistence of PGE₂-induced hypersensitivity is associated with a switch in signaling caused by prolonged exposure to PGE₂ or the neurotrophin nerve growth factor (NGF), also a crucial inflammatory mediator. DRG cultures grown in the presence or absence of either PGE₂ or NGF were used to study whether re-exposure to the eicosanoid is able to cause sensitization and activate PKA. When cultures were grown in the presence of NGF, PGE₂-induced sensitization was not attenuated by inhibitors of PKA. Activation of PKA by PGE₂ was similar in DRG cultures grown in the presence or absence of NGF when phosphatase inhibitors were added to the lysis and assay buffers, but significantly less in cultures grown in the presence of NGF when phosphatase inhibitors were not added. In DRG cultures exposed to PGE₂ for 12 hours-5 days, sensitization after re-exposure to PGE₂ is maintained and resistant to PKA inhibition. Prolonged exposure to the eicosanoid caused complete loss of PKA activation after PGE₂ re-exposure. This desensitization was homologous, time dependent, reversible, and insurmountable by a higher concentration of PGE₂. Desensitization was attenuated by reduction of expression of G-protein receptor kinase 2 and was not mediated by PKA or protein kinase C. The presented work provides evidence for persistence of sensitization by PGE₂ as well as switch from the signaling pathway mediating this sensitization after long-term exposure to NFG or PGE₂.Item Nerve growth factor/p75 neurotrophin receptor–mediated sensitization of rat sensory neurons depends on membrane cholesterol(Elsevier, 2013-09-17) Zhang, YH; Khanna, R; Nicol, Grant D.; Department of Pharmacology and Toxicology, IU School of MedicineNerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response and NGF via activation of the p75 neurotrophin receptor (p75(NTR)) and downstream sphingomyelin signaling leads to significant enhancement of the excitability of small-diameter sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether neuronal NGF-induced sensitization via p75(NTR) was dependent on the integrity of membrane rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory neurons may result from the interaction of p75(NTR) with its downstream signaling partner(s) in membrane rafts. Two agents known to disrupt membrane rafts, edelfosine and methyl-β-cyclodextrin (MβCD), block the increase in excitability produced by NGF. In contrast, treatment with MβCD containing saturated amounts of cholesterol does not alter the capacity of NGF to augment excitability. In addition, adding back MβCD with cholesterol restored the NGF-induced sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the structural integrity of rafts are key to promoting NGF-mediated sensitization. Using established protocols to isolate detergent-resistant membranes, both p75(NTR) and the neuronal membrane raft marker, flotillin, localize to raft fractions. These results suggest that downstream signaling partners interacting with p75(NTR) in sensory neurons are associated with membrane raft signaling platforms.Item NEUROFIBROMIN, NERVE GROWTH FACTOR AND RAS: THEIR ROLES IN CONTROLLING THE EXCITABILITY OF MOUSE SENSORY NEURONS(2007-01-03T18:34:09Z) Wang, Yue; Nicol, Grant D.; Vasko, Michael R.; Clapp, D. Wade; Cummins, Theodore R.ABSTRACT Yue Wang Neurofibromin, nerve growth factor and Ras: their roles in controlling the excitability of mouse sensory neurons Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates the conversion of active Ras-GTP to inactive Ras-GDP. It is likely that sensory neurons with reduced levels of neurofibromin have augmented Ras-GTP activity. In a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-), the patch-clamp recording technique is used to investigate the role of neurofibromin in controlling the state of neuronal excitability. Sensory neurons isolated from adult Nf1+/- mice generate more APs in response to a ramp of depolarizing current compared to Nf1+/+ mice. In order to elucidate whether the activation of Ras underlies this augmented excitability, sensory neurons are exposed to nerve growth factor (NGF) that activates Ras. In Nf1+/+ neurons, exposure to NGF increases the production of APs. To examine whether activation of Ras contributes to the NGF-induced sensitization in Nf1+/+ neurons, an antibody that neutralizes Ras activity is internally perfused into neurons. The NGF-mediated augmentation of excitability is suppressed by the Ras-blocking antibody in Nf1+/+ neurons, suggesting the NGF-induced sensitization in Nf1+/+ neurons depends on the activation of Ras. Surprisingly, the excitability of Nf1+/- neurons is not altered by the blocking antibody, suggesting that this enhanced excitability may depend on previous activation of downstream effectors of Ras. To determine the mechanism giving rise to augmented excitability of Nf1+/- neurons, isolated membrane currents are examined. Consistent with the enhanced excitability of Nf1+/- neurons, the peak current density of tetrodotoxin-resistant (TTX-R) and TTX-sensitive (TTX-S) sodium currents (INa) are significantly larger than in Nf1+/+ neurons. Although the voltage for half-maximal activation (V0.5) is not different, there is a significant depolarizing shift in the V0.5 for steady-state inactivation of INa in Nf1+/- neurons. In summary, these results demonstrate that the enhanced production of APs in Nf1+/- neurons results from a larger current amplitude and a depolarized voltage dependence of steady-state inactivation of INa that leads to more sodium channels being available for the subsequent firing of APs. My investigation supports the idea that regulation of channels by the Ras cascade is an important determinant of neuronal excitability. Grant D. Nicol, Ph.D, ChairItem The p75NTR SIGNALING CASCADE MEDIATES MECHANICAL HYPERALGESIA INDUCED BY NERVE GROWTH FACTOR INJECTED INTO THE RAT HIND PAW(Elsevier, 2013-12-19) Khodorova, Alla; Nicol, Grant D.; Strichartz, Gary; Department of Pharmacology and Toxicology, IU School of MedicineNerve Growth Factor (NGF) augments excitability of isolated rat sensory neurons through activation of the p75 neurotrophin receptor (p75NTR) and its downstream sphingomyelin signaling cascade, wherein neutral sphingomyelinase(s) (nSMase), ceramide, and the atypical PKC (aPKC), PKMζ, are key mediators. Here we examined these same receptor-pathways in vivo for their role in mechanical hyperalgesia from exogenous NGF. Mechanical sensitivity was tested by the number of paw withdrawals in response to 10 stimuli (PWF = n/10) by a 4g von Frey hair (VFH, testing “allodynia”) and by 10g and 15g VFHs (testing “hyperalgesia”). NGF (500 ng/10 µl) injected into the male rat’s plantar hind paw induced long lasting ipsilateral mechanical hypersensitivity. Mechano-hypersensitivity, relative to baseline responses and to those of the contralateral paw, developed by 0.5–1.5h and remained elevated at least for 21–24h, Acute intraplantar pre-treatment with nSMase inhibitors, GSH or GW4869, prevented the acute hyperalgesia from NGF (at 1.5h) but not that at 24h. A single injection of N-acetyl sphingosine (C2-ceramide), simulating the ceramide produced by nSMase activity, induced ipsilateral allodynia that persisted for 24h, and transient hyperalgesia that resolved by 2h. Intraplantar injection of hydrolysis-resistant mPro-NGF, selective for the p75NTR over the TrkA receptor, gave very similar results to NGF and was susceptible to the same inhibitors. Hyperalgesia from both NGF and mPro-NGF was prevented by paw pre-injection with blocking antibodies to rat p75NTR receptor. Finally, intraplantar (1 day before NGF) injection of mPSI, the myristolated pseudosubstrate inhibitor of PKCζ/PKMζ, decreased the hyperalgesia resulting from NGF or C2-ceramide, although scrambled mPSI was ineffective. The findings indicate that mechano-hypersensitivity from peripheral NGF involves the sphingomyelin signaling cascade activated via p75NTR, and that a peripheral aPKC is essential for this sensitization.