Increased Resurgent Sodium Currents (INaR) in Inherited and Acquired Disorders of Excitability

If you need an accessible version of this item, please submit a remediation request.
Date
2012-08-07
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2012
Department
Department of Pharmacology & Toxicology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Voltage-gated sodium channels (VGSCs) are dynamic membrane spanning proteins which mediate the rapid influx of Na+ during the upstroke of the action potential (AP). In addition to the large inward Na+ currents responsible for the upstroke of the AP, some VGSC isoforms produce smaller, subthreshold Na+ currents, which can influence the excitable properties of neurons. An example of such a subthreshold current is resurgent Na+ current (INaR). These unusual currents are active during repolarization of the membrane potential, where the channel is normally refractory to activity. INaR exhibit slow gating kinetics and unusual voltage-dependence derived from a novel mechanism of channel inactivation which allows the channel to recover through an open configuration resulting in membrane depolarization early in the falling phase of the AP, ultra-fast re-priming of channels, and multiple AP spikes. Although originally identified in fast spiking central nervous system (CNS) neurons, INaR has recently been observed in a subpopulation of peripheral dorsal root ganglion (DRG) neurons. Because INaR is believed to contribute to spontaneous and high frequency firing of APs, I have hypothesized that increased INaR may contribute to ectopic AP firing associated with inherited and acquired disorders of excitability. Specifically, this dissertation explores the mechanisms which underlie the electrogenesis of INaR in DRG neurons and determines whether the biophysical properties of these unique currents were altered by mutations that cause inherited muscle and neuronal channelopathies or in an experimental model of nerve injury. The results demonstrate that (1) multiple Na+ channel isoforms are capable of producing INaR in DRG neurons, including NaV1.3, NaV1.6, and NaV1.7, (2) inherited muscle and neuronal channelopathIy mutations that slow the rate of channel inactivation increase INaR amplitude, (3) temperature sensitive INaR produced by select skeletal muscle channelopthy mutations may contribute to the triggering of cold-induced myotonia, and (4) INaR amplitude and distribution is significantly increased two weeks post contusive spinal cord injury (SCI). Taken together, results from this dissertation provide foundational knowledge of the properties and mechanism of INaR in DRG neurons and indicates that increased INaR likely contributes to the enhanced membrane excitability associated with multiple inherited and acquired disorders of excitability.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}