- Browse by Author
Browsing by Author "Muldoon, Jacob"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Conserved quantities in non-hermitian systems via vectorization method(CTU, 2022-02-28) Agarwal, Kaustubh S.; Muldoon, Jacob; Joglekar, Yogesh N.; Physics, School of ScienceOpen classical and quantum systems have attracted great interest in the past two decades. These include systems described by non-Hermitian Hamiltonians with parity-time (PT) symmetry that are best understood as systems with balanced, separated gain and loss. Here, we present an alternative way to characterize and derive conserved quantities, or intertwining operators, in such open systems. As a consequence, we also obtain non-Hermitian or Hermitian operators whose expectations values show single exponential time dependence. By using a simple example of a PT-symmetric dimer that arises in two distinct physical realizations, we demonstrate our procedure for static Hamiltonians and generalize it to time-periodic (Floquet) cases where intertwining operators are stroboscopically conserved. Inspired by the Lindblad density matrix equation, our approach provides a useful addition to the well-established methods for characterizing time-invariants in non-Hermitian systems.Item Floquet exceptional contours in Lindblad dynamics with time-periodic drive and dissipation(American Physical Society (APS), 2021-02-22) Gunderson, John; Muldoon, Jacob; Murch, Kater W.; Joglekar, Yogesh N.; Physics, School of ScienceThe dynamics of an isolated quantum system is coherent and unitary. Weak coupling to the environment leads to decoherence, which is traditionally modeled with a Lindblad equation for the system's density matrix. Starting from a pure state, such a system approaches a steady state (mixed or otherwise) in an underdamped or overdamped manner. This transition occurs at an eigenvalue degeneracy of a Lindblad superoperator, called an exceptional point (EP), where corresponding eigenvectors coalesce. Recent years have seen an explosion of interest in creating exceptional points in a truly quantum domain, driven by the enhanced sensitivity and topological features EPs have shown in their classical realizations. Here, we present Floquet analysis of a prototypical qubit whose drive or dissipator strengths are varied periodically. We consider models with a single dissipator that generate global loss (phase damping) or mode-selective loss (spontaneous emission). In all cases, we find that periodic modulations lead to EP lines at small dissipator strengths and a rich EP structure in the parameter space. Our analytical and numerical results show that extending Lindblad Liouvillians to the Floquet domain is a potentially preferred route to accessing exceptional points in the transient dynamics towards the Lindblad steady state.