- Browse by Author
Browsing by Author "Martin, Pamela"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biological potential and diffusion limitation of methane oxidation in no-till soils(2014-05-21) Prajapati, Prajaya; Wang, Xianzhong; Martin, Pamela; Jacinthe, Pierre-AndréLong term no-till (NT) farming can improve the CH4 oxidation capacity of agricultural lands through creation of a favorable soil environment for methanotrophs and diffusive gas transport. However, limited data is available to evaluate the merit of that contention. Although the potential for biological CH4 oxidation may exist in NT soils, restricted diffusion could limit expression of that potential in fine-textured soils. A study was conducted to assess the CH4 oxidation potential and gaseous diffusivity of soils under plow till (PT) and NT for > 50 years. Intact cores and composite soils samples (0-10 and 10-20 cm) were collected from NT and PT plots located at a well-drained site (Wooster silt loam) and at a poorly-drained (Crosby silt loam) site in Ohio. Adjacent deciduous forest soils were also sampled to determine maximum rate expected in undisturbed soils in the region. Regardless of study sites and soil depth, CH4 oxidation rate (measured at near ambient CH4) and oxidation potential (Vmax, measured at elevated CH4) were 3-4 and 1.5 times higher in NT than in PT soils, respectively. Activity in the NT soils approached (66-80 %) that in the forest soils. Half saturation constants (Km) and threshold for CH4 oxidation (Th) were lower in NT (Km: 100.5 µL CH4 L-1; Th: 0.5 µL CH4 L-1) than in PT soils (Km: 134 µL CH4 L-1; Th: 2.8 µL CH4 L-1) suggesting a greater affinity of long-term NT soils for CH4, and a possible shift in methanotrophic community composition. CH4 oxidation rates were lower in intact soil cores compared to sieved soils, suggesting that CH4 oxidation was limited by diffusion, a factor that could lead to lower field-measured CH4 uptake than suggested by biological oxidation capacity measured in the laboratory. Regardless of soil drainage characteristic, long-term NT resulted in significantly higher (2-3 times) CH4 diffusivity (mean: 2.5 x 10-3 cm2 s-1) than PT (1.5 x 10-3 cm2 s-1), probably due to improved soil aggregation and greater macro-pores volume in NT soils. Overall, these results confirm the positive impact of NT on the restoration of the biological (Vmax, Km and Th) and physical (diffusivity) soil attributes essential for CH4 uptake in croplands. Long-term implementation of NT farming can therefore contribute to the mitigation of CH4 emission from agriculture.Item Double dating detrital zircons in till from the Ross Embayment, Antarctica(2014-05-21) Welke, Bethany Marie; Licht, Kathy J.; Hemming, Sidney R.; Martin, PamelaU/Pb and (U-Th)/He (ZHe) dating of detrital zircons from glacial till samples in the Ross Embayment, Antarctica records cooling after the Ross/Pan-African orogeny (450-625 Ma) followed by a mid-Jurassic to mid-Cretaceous heating event in the Beacon basin. Zircons were extracted from till samples from heads of major outlet glaciers in East Antarctica, one sample at the mouth of Scott Glacier, and from beneath three West Antarctic ice streams. The Ross/Pan-African U/Pb population is ubiquitous in these Antarctic tills and many Beacon Supergroup sandstones, thus 83 grains were analyzed for ZHe to subdivide this population. Two ZHe age populations are evident in East Antarctic tills, with 64% of grains 115-200 Ma and 35% between 200-650 Ma. The older population is interpreted to be associated with the Ross/Pan-African orogeny including cooling of the Granite Harbour Intrusives and/or exhumation of the older basement rocks to form the Kukri Peneplain. The lag time between zircon U/Pb, ZHe and 40Ar/39Ar ages from K-bearing minerals show cooling over 200 My. Grains in East Antarctic tills with a ZHe age of 115-200 Ma likely reflects regional heating following the breakup of Gondwana from the Ferrar dolerite intrusions, subsidence within the rift basin, and a higher geothermal gradient. Subsequent cooling and/or exhumation of the Transantarctic Mountains brought grains below the closure temperature over a span of 80 My. This population may also provide a Beacon Supergroup signature as most of the tills with this age are adjacent to nunataks mapped as Beacon Supergroup and contain an abundance of vi Beacon pebbles within the moraine. Nine zircons grains from three Beacon Supergroup sandstones collected from moraines across the Transantarctic Mountains yield ages from 125-180 Ma. West Antarctic tills contain a range of ZHe ages from 75-450 Ma reflecting the diverse provenance of basin fill from East Antarctica and Marie Byrd Land. ZHe and U/Pb ages <105 Ma appear to be distinctive of West Antarctic tills. The combination of U/Pb, ZHe and 40Ar/39Ar analyses demonstrates that these techniques can be used to better constrain the tectonic evolution and cooling of the inaccessible subglacial source terrains beneath the Antarctic Ice Sheet.