- Browse by Author
Browsing by Author "Manatunga, Amita K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An integrative latent class model of heterogeneous data modalities for diagnosing kidney obstruction(Oxford University Press, 2024) Jang, Jeong Hoon; Chang, Changgee; Manatunga, Amita K.; Taylor, Andrew T.; Long, Qi; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthRadionuclide imaging plays a critical role in the diagnosis and management of kidney obstruction. However, most practicing radiologists in US hospitals have insufficient time and resources to acquire training and experience needed to interpret radionuclide images, leading to increased diagnostic errors. To tackle this problem, Emory University embarked on a study that aims to develop a computer-assisted diagnostic (CAD) tool for kidney obstruction by mining and analyzing patient data comprised of renogram curves, ordinal expert ratings on the obstruction status, pharmacokinetic variables, and demographic information. The major challenges here are the heterogeneity in data modes and the lack of gold standard for determining kidney obstruction. In this article, we develop a statistically principled CAD tool based on an integrative latent class model that leverages heterogeneous data modalities available for each patient to provide accurate prediction of kidney obstruction. Our integrative model consists of three sub-models (multilevel functional latent factor regression model, probit scalar-on-function regression model, and Gaussian mixture model), each of which is tailored to the specific data mode and depends on the unknown obstruction status (latent class). An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. Extensive simulations are conducted to evaluate the performance of the proposed method. An application to an Emory renal study demonstrates the usefulness of our model as a CAD tool for kidney obstruction.Item A Bayesian multiple imputation approach to bivariate functional data with missing components(Wiley, 2021) Jang, Jeong Hoon; Manatunga, Amita K.; Chang, Changgee; Long, Qi; Biostatistics and Health Data Science, School of MedicineExisting missing data methods for functional data mainly focus on reconstructing missing measurements along a single function-a univariate functional data setting. Motivated by a renal study, we focus on a bivariate functional data setting, where each sampling unit is a collection of two distinct component functions, one of which may be missing. Specifically, we propose a Bayesian multiple imputation approach based on a bivariate functional latent factor model that exploits the joint changing patterns of the component functions to allow accurate and stable imputation of one component given the other. We further extend the framework to address multilevel bivariate functional data with missing components by modeling and exploiting inter-component and intra-subject correlations. We develop a Gibbs sampling algorithm that simultaneously generates multiple imputations of missing component functions and posterior samples of model parameters. For multilevel bivariate functional data, a partially collapsed Gibbs sampler is implemented to improve computational efficiency. Our simulation study demonstrates that our methods outperform other competing methods for imputing missing components of bivariate functional data under various designs and missingness rates. The motivating renal study aims to investigate the distribution and pharmacokinetic properties of baseline and post-furosemide renogram curves that provide further insights into the underlying mechanism of renal obstruction, with post-furosemide renogram curves missing for some subjects. We apply the proposed methods to impute missing post-furosemide renogram curves and obtain more refined insights.