- Browse by Author
Browsing by Author "Maier, Bernhard"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item 12-Lipoxygenase Promotes Obesity-Induced Oxidative Stress in Pancreatic Islets(American Society for Microbiology (ASM), 2014-10) Tersey, Sarah A.; Maier, Bernhard; Nishiki, Yurika; Maganti, Aarthi V.; Nadler, Jerry L.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of MedicineHigh-fat diets lead to obesity, inflammation, and dysglycemia. 12-Lipoxygenase (12-LO) is activated by high-fat diets and catalyzes the oxygenation of cellular arachidonic acid to form proinflammatory intermediates. We hypothesized that 12-LO in the pancreatic islet is sufficient to cause dysglycemia in the setting of high-fat feeding. To test this, we generated pancreas-specific 12-LO knockout mice and studied their metabolic and molecular adaptations to high-fat diets. Whereas knockout mice and control littermates displayed identical weight gain, body fat distribution, and macrophage infiltration into fat, knockout mice exhibited greater adaptive islet hyperplasia, improved insulin secretion, and complete protection from dysglycemia. At the molecular level, 12-LO deletion resulted in increases in islet antioxidant enzymes Sod1 and Gpx1 in response to high-fat feeding. The absence or inhibition of 12-LO led to increases in nuclear Nrf2, a transcription factor responsible for activation of genes encoding antioxidant enzymes. Our data reveal a novel pathway in which islet 12-LO suppresses antioxidant enzymes and prevents the adaptive islet responses in the setting of high-fat diets.Item Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease(MDPI, 2022-03-30) Collins, Kimberly S.; Eadon, Michael T.; Cheng, Ying-Hua; Barwinska, Daria; Ferreira, Ricardo Melo; McCarthy, Thomas W.; Janosevic, Danielle; Syed, Farooq; Maier, Bernhard; El-Achkar, Tarek M.; Kelly, Katherine J.; Phillips, Carrie L.; Hato, Takashi; Sutton, Timothy A.; Dagher, Pierre C.; Medicine, School of MedicineDiabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography-mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.Item The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration(American Society for Clinical Investigation, 2019-09-03) Uchida, Masaki; Maier, Bernhard; Waghwani, Hitesh Kumar; Selivanovitch, Ekaterina; Pay, S. Louise; Avera, John; Yun, EJun; Sandoval, Ruben M.; Molitoris, Bruce A.; Zollman, Amy; Douglas, Trevor; Hato, Takashi; Medicine, School of MedicineNature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) — the extremely small archaeal antioxidant nanocage — is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule–selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.Item Bacterial sepsis triggers an antiviral response that causes translation shutdown(American Society for Clinical Investigation, 2019-01-02) Hato, Takashi; Maier, Bernhard; Syed, Farooq; Myslinski, Jered; Zollman, Amy; Plotkin, Zoya; Eadon, Michael T.; Dagher, Pierre C.; Medicine, School of MedicineIn response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses, as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (Eif2ak2/Eif2α) axis is the key mediator of translation initiation block in late-phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings imply that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis.Item Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation(Springer Nature, 2017-06-19) Hatanaka, Masayuki; Anderson-Baucum, Emily; Lakhter, Alexander; Kono, Tatsuyoshi; Maier, Bernhard; Tersey, Sarah A.; Tanizawa, Yukio; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Sims, Emily K.; Pediatrics, School of MedicineUnder conditions of high fat diet (HFD) consumption, glucose dyshomeostasis develops when β-cells are unable to adapt to peripheral insulin demands. Few studies have interrogated the molecular mechanisms of β-cell dysfunction at the level of mRNA translation under such conditions. We sought to address this issue through polyribosome profile analysis of islets from mice fed 16-weeks of 42% HFD. HFD-islet analysis revealed clear trends toward global reductions in mRNA translation with a significant reduction in the polyribosome/monoribosome ratio for Pdx1 mRNA. Transcriptional and translational analyses revealed endoplasmic reticulum stress was not the etiology of our findings. HFD-islets demonstrated evidence of oxidative stress and DNA damage, as well as activation of p53. Experiments in MIN-6 β-cells revealed that treatment with doxorubicin to directly induce DNA damage mimicked our observed effects in islets. Islets from animals treated with pioglitazone concurrently with HFD demonstrated a reversal of effects observed from HFD alone. Finally, HFD-islets demonstrated reduced expression of multiple ribosome biogenesis genes and the key translation initiation factor eIF4E. We propose a heretofore unappreciated effect of chronic HFD on β-cells, wherein continued DNA damage owing to persistent oxidative stress results in p53 activation and a resultant inhibition of mRNA translation.Item Deoxyhypusine Synthase Promotes a Pro-Inflammatory Macrophage Phenotype(Elsevier, 2021) Anderson-Baucum, Emily; Piñeros, Annie R.; Kulkarni, Abhishek; Webb-Robertson, Bobbie-Jo; Maier, Bernhard; Anderson, Ryan M.; Wu, Wenting; Tersey, Sarah A.; Mastracci, Teresa L.; Casimiro, Isabel; Scheuner, Donalyn; Metz, Thomas O.; Nakayasu, Ernesto S.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Biology, School of ScienceThe metabolic inflammation (meta-inflammation) of obesity is characterized by proinflammatory macrophage infiltration into adipose tissue. Catalysis by deoxyhypusine synthase (DHPS) modifies the translation factor eIF5A to generate a hypusine (Hyp) residue. Hypusinated eIF5A (eIF5AHyp) controls the translation of mRNAs involved in inflammation, but its role in meta-inflammation has not been elucidated. Levels of eIF5AHyp were found to be increased in adipose tissue macrophages from obese mice and in murine macrophages activated to a proinflammatory M1-like state. Global proteomics and transcriptomics revealed that DHPS deficiency in macrophages altered the abundance of proteins involved in NF-κB signaling, likely through translational control of their respective mRNAs. DHPS deficiency in myeloid cells of obese mice suppressed M1 macrophage accumulation in adipose tissue and improved glucose tolerance. These findings indicate that DHPS promotes the post-transcriptional regulation of a subset of mRNAs governing inflammation and chemotaxis in macrophages and contributes to a proinflammatory M1-like phenotype.Item Deoxyhypusine synthase promotes differentiation and proliferation of T helper type 1 (Th1) cells in autoimmune diabetes(ASBMB, 2013-12-20) Colvin, Stephanie C.; Maier, Bernhard; Morris, David L.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of MedicineIn type 1 diabetes, cytokines arising from immune cells cause islet β cell dysfunction even before overt hyperglycemia. Deoxyhypusine synthase catalyzes the crucial hypusine modification of the factor eIF5A, which promotes the translation of a subset of mRNAs involved in cytokine responses. Here, we tested the hypothesis that deoxyhypusine synthase and, secondarily, hypusinated eIF5A contribute to the pathogenesis of type 1 diabetes using the non-obese diabetic (NOD) mouse model. Pre-diabetic NOD mice that received injections of the deoxyhypusine inhibitor N1-guanyl-1,7-diaminoheptane (GC7) demonstrated significantly improved glucose tolerance, more robust insulin secretion, and reduced insulitis compared with control animals. Analysis of tissues from treated mice revealed selective reductions in diabetogenic T helper type 1 (Th1) cells in the pancreatic lymph nodes, a primary site of antigen presentation. Isolated mouse CD90.2(+) splenocytes stimulated in vitro with anti-CD3/anti-CD28 and IL-2 to mimic autoimmune T cell activation exhibited proliferation and differentiation of CD4(+) T cell subsets (Th1, Th17, and Treg), but those treated with the deoxyhypusine synthase inhibitor GC7 showed a dose-dependent block in T cell proliferation with selective reduction in Th1 cells, similar to that observed in NOD mice. Inhibition of deoxyhypusine synthase blocked post-transcriptional expression of CD25, the high affinity IL-2 receptor α chain. Our results suggest a previously unrecognized role for deoxyhypusine synthase in promoting T cell proliferation and differentiation via regulation of CD25. Inhibition of deoxyhypusine synthase may provide a strategy for reducing diabetogenic Th1 cells and preserving β cell function in type 1 diabetes.Item HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death(ATS, 2019-03) Chelvanambi, Sarvesh; Bogatcheva, Natalia V.; Bednorz, Mariola; Agarwal, Stuti; Maier, Bernhard; Alves, Nathan J.; Li, Wei; Syed, Farooq; Saber, Manal M.; Dahl, Noelle; Lu, Hongyan; Day, Richard B.; Smith, Patricia; Jolicoeur, Paul; Yu, Qigui; Dhillon, Navneet K.; Weissmann, Norbert; Twigg, Homer L., III; Clauss, Matthias; Medicine, School of MedicineIt remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte–activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial–cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.Item Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis(American Association for the Advancement of Science, 2019-12-03) Levasseur, Esther M.; Yamada, Kentaro; Piñeros, Annie R.; Wu, Wenting; Syed, Farooq; Orr, Kara S.; Anderson-Baucum, Emily; Mastracci, Teresa L.; Maier, Bernhard; Mosley, Amber L.; Liu, Yunlong; Bernal-Mizrachi, Ernesto; Alonso, Laura C.; Scott, Donald; Garcia-Ocaña, Adolfo; Tersey, Sarah A.; Mirmira, Raghavendra G.; Pediatrics, School of MedicineDeoxyhypusine synthase (DHPS) utilizes the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly-defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of Dhps specifically in postnatal islet β cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces β-cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation and protein secretion, reduced production of the cell cycle molecule cyclin D2, impaired β-cell proliferation, and induced overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in β cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.Item Inflammation primes the kidney for recovery by activating AZIN1 A-to-I editing(bioRxiv, 2023-11-09) Heruye, Segewkal; Myslinski, Jered; Zeng, Chao; Zollman, Amy; Makino, Shinichi; Nanamatsu, Azuma; Mir, Quoseena; Janga, Sarath Chandra; Doud, Emma H.; Eadon, Michael T.; Maier, Bernhard; Hamada, Michiaki; Tran, Tuan M.; Dagher, Pierre C.; Hato, Takashi; Biochemistry and Molecular Biology, School of MedicineThe progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and Adenosine Deaminase isoform switching. We found that A-to-I editing of Antizyme Inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.