- Browse by Author
Browsing by Author "Lu, Xiongbin"
Now showing 1 - 10 of 45
Results Per Page
Sort Options
Item A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance(Elsevier, 2024) Sun, Lei; Wan, Arabella H.; Yan, Shijia; Liu, Ruonian; Li, Jiarui; Zhou, Zhuolong; Wu, Ruirui; Chen, Dongshi; Bu, Xianzhang; Ou, Jingxing; Li, Kai; Lu, Xiongbin; Wan, Guohui; Ke, Zunfu; Medical and Molecular Genetics, School of MedicineLenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.Item A T Cell‐Engaging Tumor Organoid Platform for Pancreatic Cancer Immunotherapy(Wiley, 2023) Zhou, Zhuolong; Van der Jeught, Kevin; Li, Yujing; Sharma, Samantha; Yu, Tao; Moulana, Ishara; Liu, Sheng; Wan, Jun; Territo, Paul R.; Opyrchal, Mateusz; Zhang, Xinna; Wan, Guohui; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicinePancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune‐resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high‐throughput drug screen platform is established with the newly developed T cell‐incorporated pancreatic tumor organoid model. Tumor‐specific T cells are included in the pancreatic tumor organoids by two‐step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid‐based screen, epigenetic inhibitors ITF2357 and I‐BET151 are identified, which in combination with anti‐PD‐1 based therapy show considerably greater anti‐tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up‐regulates the MHC‐I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.Item Acoustic assembly of cell spheroids in disposable capillaries(IOP, 2018-12) Wu, Yue; Ao, Zheng; Chen, Bin; Muhsen, Maram; Bondesson, Maria; Lu, Xiongbin; Guo, Feng; Medical and Molecular Genetics, School of MedicineMulticellular spheroids represent a promising approach to mimic 3D tissues in vivo for emerging applications in regenerative medicine, therapeutic screening, and drug discovery. Conventional spheroid fabrication methods, such as the hanging drop method, suffer from low-throughput, long time, complicated procedure, and high heterogeneity in spheroid size. In this work, we report a simple yet reliable acoustic method to rapidly assemble cell spheroids in capillaries in a replicable and scalable manner. Briefly, by introducing a coupled standing surface acoustic wave, we are able to generate a linear pressure node array with 300 trapping nodes simultaneously. This enables us to continuously fabricate spheroids in a high-throughput manner with minimal variability in spheroid size. In a proof of concept application, we fabricated cell spheroids of mouse embryonic carcinoma (P19) cells, which grew well and retained differentiation potential in vitro. Based on the advantages of the non-invasive, contactless and label-free acoustic cell manipulation, our method employs the coupling strategy to assemble cells in capillaries, and further advances 3D spheroid assembly technology in an easy, cost-efficient, consistent, and high-throughput manner. This method could further be adapted into a novel 3D biofabrication approach to replicate compilated tissues and organs for a wide set of biomedical applications.Item Adaptive phase I-II clinical trial designs identifying optimal biological doses for targeted agents and immunotherapies(Sage, 2024) Zang, Yong; Guo, Beibei; Qiu, Yingjie; Liu, Hao; Opyrchal, Mateusz; Lu, Xiongbin; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthTargeted agents and immunotherapies have revolutionized cancer treatment, offering promising options for various cancer types. Unlike traditional therapies the principle of "more is better" is not always applicable to these new therapies due to their unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes. This review article examines several innovative phase I-II clinical trial designs that utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent patients and identify the optimal biological dose, maximizing the overall therapeutic effect. Specifically, we highlight three categories of phase I-II designs: efficacy-driven, utility-based, and designs incorporating multiple efficacy endpoints. For each design, we review the dose-outcome model, the definition of the optimal biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO designs. Finally, we provide a classification tree to summarize the designs discussed in this article.Item ARF6 is a Novel Target for Immunotherapy in Triple Negative Breast Cancer(2024-07) Moulana, Fathima Ishara; Lu, Xiongbin; Pollok, Karen; Hopewell, Emily; Liu, JingTriple negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes with poor clinical outcomes due to lack of effective treatments owing to its hormone receptor negative status. Immune checkpoint blockade (ICB) therapy, which prevents the exhaustion of CD8+ T cells, has shown promise in treating these patients. However, only a small proportion respond, possibly due to resistance and immune evasion mechanisms by the tumor cells. A primary mechanism by which tumor cells evade immune surveillance is by reduced tumor antigen presentation, as indicated by a decreased level of antigen-MHC-I (major histocompatibility complex-I) on the surface of tumor cells. The dynamics of tumor antigens on the cell surface and how cell endocytosis contributes to antigen presentation and their recycling is little known. Here we sought to study the roles of two proteins: clathrin and ADP-Ribosylation Factor 6 (ARF6) which are essential for clathrin-mediated endocytosis and clathrin-independent endocytosis respectively, on the surface turnover of fluorophore-conjugated antigenic peptide bound to MHC-I. We employed Total Internal Reflection Fluorescence Microscopy (TIRFM) and Single Molecule Tracking (SMT) to determine the dynamics of tumor antigen endocytosis on the surface of EO771 murine TNBC cells. We found that the inhibition of ARF6 remarkably impaired the endocytosis of the antigen-MHC-I foci, leading to extended stay of the foci on the cell membrane, while inhibition of clathrin did not, suggesting that clathrin-independent endocytosis is the primary route for MHC-I-mediated antigen endocytosis. Consistent with this finding, reduced ARF6 levels promoted in vitro tumor cell killing by CD8+ T cells and suppressed tumor growth in mice when combined with ICB therapy. We further investigated the effect of pharmacological inhibition of ARF6 in murine TNBC cells and splenic CD8+ T cells using a commercially available ARF6 inhibitor NAV-2729. Treatment with NAV-2729 increased surface MHC-I levels and enhanced the secretion of T cell functional markers such as IFN-, TNF- and IL-2, suggesting the possibility of in vivo administration of ARF6 inhibitors in combination with ICB therapy. Collectively, these data suggest that ARF6 is a novel target for the combined treatment with ICB therapy to improve its efficacy in TNBC patients.Item Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation(The American Society for Clinical Investigation, 2021-05-17) Xu, Hanchen; Van der Jeught, Kevin; Zhou, Zhuolong; Zhang, Lu; Yu, Tao; Sun, Yifan; Li, Yujing; Wan, Changlin; So, Ka Man; Liu, Degang; Frieden, Michael; Fang, Yuanzhang; Mosley, Amber L.; He, Xiaoming; Zhang, Xinna; Sandusky, George E.; Liu, Yunlong; Meroueh, Samy O.; Zhang, Chi; Wijeratne, Aruna B.; Huang, Cheng; Ji, Guang; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineOne of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell–mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non–ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I–mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient–derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.Item Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation(Wiley, 2020-04-28) Wang, Hai; Agarwal, Pranay; Jiang, Bin; Stewart, Samantha; Liu, Xuanyou; Liang, Yutong; Hancioglu, Baris; Webb, Amy; Fisher, John P.; Liu, Zhenguo; Lu, Xiongbin; Tkaczuk, Katherine H. R.; He, Xiaoming; Medical and Molecular Genetics, School of MedicineItem Correction to Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial(American Chemical Society, 2021) Wang, Hai; Agarwal, Pranay; Zhao, Gang; Ji, Guang; Jewell, Christopher M.; Fisher, John P.; Lu, Xiongbin; He, Xiaoming; Medicine, School of Medicine[This corrects the article DOI: 10.1021/acscentsci.8b00050.].Item Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection(Elsevier, 2019-03) Sun, Mingrui; Xu, Jiangsheng; Shamul, James G.; Lu, Xiongbin; Husain, Syed; He, Xiaoming; Medical and Molecular Genetics, School of MedicineEfficient capture of rare circulating tumor cells (CTCs) from blood samples is valuable for early cancer detection to improve the management of cancer. In this work, we developed a highly efficient microfluidics-based method for detecting CTCs in human blood. This is achieved by creating separate capture and flow zones in the microfluidic device (ZonesChip) and using patterned dielectrophoretic force to direct cells from the flow zone into the capture zone. This separation of the capture and flow zones minimizes the negative impact of high flow speed (and thus high throughput) and force in the flow zone on the capture efficiency, overcoming a major bottleneck of contemporary microfluidic approaches using overlapping flow and capture zones for CTC detection. When the flow speed is high (≥0.58 mm/s) in the flow zone, the separation of capture and flow zones in our ZonesChip could improve the capture efficiency from ∼0% (for conventional device without separating the two zones) to ∼100%. Our ZonesChip shows great promise as an effective platform for the detection of CTCs in blood from patients with early/localized-stage colorectal tumors.Item Development of Cancer-Genomics-Guided Precision Immunotherapy for Triple-Negative Breast Cancer(2023-05) Sun, Yifan; Lu, Xiongbin; Kaplan, Mark H.; Hopewell, Emily L.; Zhang, Chi; Yang, KaiTriple-negative breast cancer (TNBC), which accounts for 15-20% of all breast cancers, is highly aggressive and metastatic with the poorest overall rates. While surgery, radiation, and chemotherapy remain the main treatment options, TNBC represents an unmet medical need for better treatment strategies. Tremendous efforts have been made to develop effective therapies over the past years. However, TNBC treatment options are still very limited due to the lack of good drug targets and the low response rate of current therapies. In this study, we developed two different strategies to treat TNBC based on its cancer genomic features: 1) heterozygous loss of chromosome 17p (17p loss) and 2) high mutation load. 17p loss is one of the most frequent genomic events in breast cancer including TNBC, rendering cancer cells vulnerable to the inhibition of POLR2A via α-amanitin (POLR2A-specific inhibitor). Here, we developed a new drug T-Ama (α-amanitin-conjugated trastuzumab) targeting HER2-low TNBC with 17p loss by combining the effects of α-amanitin and trastuzumab (HER2+ breast cancer therapy). Our results showed that T-Ama exhibited superior efficacy in treating HER2-low TNBC with 17p loss in vitro and in vivo, and surprisingly induced immunogenic cell death (ICD) which further enhanced T cell infiltration and cytotoxicity levels and delivered greater efficacy in combination with immune checkpoint blockade therapy. Collectively, the therapeutic window created by 17p loss and HER2 expression will make HER2-low TNBC clinically feasible targets of T-Ama. As another genetic feature of TNBC, the higher genomic instability and mutational burden results in more neoantigens presented on MHC-I, along with the higher level of tumor-infiltrating T cells, making TNBC a perfect model for immunotherapy compared to the other breast cancer subtypes. Here, we designed a deconvolution-algorithm-derived library screening to find new therapeutic targets and identified PIK3C2α as a key player that determines MHC-I turnover and reduces the MHC-I-restricted antigen presentation on tumor cells. In preclinical models, inhibition of PIK3C2α profoundly suppressed breast tumor growth, increased tumor-infiltrating CD8+ T cells, and showed high potential enhancing the efficacy of anti-PD-1 therapy, suggesting that PIK3C2α is a potential therapeutic target for TNBC immunotherapy.