- Browse by Author
Browsing by Author "Lost, Jan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging(Oxford University Press, 2024-10-03) Lost, Jan; Ashraf, Nader; Jekel, Leon; von Reppert, Marc; Tillmanns, Niklas; Willms, Klara; Merkaj, Sara; Cassinelli Petersen, Gabriel; Avesta, Arman; Ramakrishnan, Divya; Omuro, Antonio; Nabavizadeh, Ali; Bakas, Spyridon; Bousabarah, Khaled; Lin, MingDe; Aneja, Sanjay; Sabel, Michael; Aboian, Mariam; Pathology and Laboratory Medicine, School of MedicineBackground: Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation. Methods: This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry. Results: The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847. Conclusions: The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.Item The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI(ArXiv, 2023-06-01) Moawad, Ahmed W.; Janas, Anastasia; Baid, Ujjwal; Ramakrishnan, Divya; Jekel, Leon; Krantchev, Kiril; Moy, Harrison; Saluja, Rachit; Osenberg, Klara; Wilms, Klara; Kaur, Manpreet; Avesta, Arman; Cassinelli Pedersen, Gabriel; Maleki, Nazanin; Salimi, Mahdi; Merkaj, Sarah; von Reppert, Marc; Tillmans, Niklas; Lost, Jan; Bousabarah, Khaled; Holler, Wolfgang; Lin, MingDe; Westerhoff, Malte; Maresca, Ryan; Link, Katherine E.; Tahon, Nourel Hoda; Marcus, Daniel; Sotiras, Aristeidis; LaMontagne, Pamela; Chakrabarty, Strajit; Teytelboym, Oleg; Youssef, Ayda; Nada, Ayaman; Velichko, Yuri S.; Gennaro, Nicolo; Connectome Students; Group of Annotators; Cramer, Justin; Johnson, Derek R.; Kwan, Benjamin Y. M.; Petrovic, Boyan; Patro, Satya N.; Wu, Lei; So, Tiffany; Thompson, Gerry; Kam, Anthony; Guzman Perez-Carrillo, Gloria; Lall, Neil; Group of Approvers; Albrecht, Jake; Anazodo, Udunna; Lingaru, Marius George; Menze, Bjoern H.; Wiestler, Benedikt; Adewole, Maruf; Anwar, Syed Muhammad; Labella, Dominic; Li, Hongwei Bran; Iglesias, Juan Eugenio; Farahani, Keyvan; Eddy, James; Bergquist, Timothy; Chung, Verena; Shinohara, Russel Takeshi; Dako, Farouk; Wiggins, Walter; Reitman, Zachary; Wang, Chunhao; Liu, Xinyang; Jiang, Zhifan; Van Leemput, Koen; Piraud, Marie; Ezhov, Ivan; Johanson, Elaine; Meier, Zeke; Familiar, Ariana; Kazerooni, Anahita Fathi; Kofler, Florian; Calabrese, Evan; Aneja, Sanjay; Chiang, Veronica; Ikuta, Ichiro; Shafique, Umber; Memon, Fatima; Conte, Gian Marco; Bakas, Spyridon; Rudie, Jeffrey; Aboian, Mariam; Radiology and Imaging Sciences, School of MedicineClinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.