- Browse by Author
Browsing by Author "Li, Ping"
Now showing 1 - 10 of 48
Results Per Page
Sort Options
Item A Conserved Female-Specific Requirement for the GGT Gene in Mosquito Larvae Facilitates RNAi-Mediated Sex Separation in Multiple Species of Disease Vector Mosquitoes(MDPI, 2022-01-27) Mysore, Keshava; Sun, Longhua; Li, Ping; Roethele, Joseph B.; Misenti, Joi K.; Kosmach, John; Igiede, Jessica; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineAlthough several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.Item A Broad-Based Mosquito Yeast Interfering RNA Pesticide Targeting Rbfox1 Represses Notch Signaling and Kills Both Larvae and Adult Mosquitoes(MDPI, 2021-09-28) Mysore, Keshava; Sun, Longhua; Hapairai, Limb K.; Wang, Chien-Wei; Roethele, Joseph B.; Igiede, Jessica; Scheel, Max P.; Scheel, Nicholas D.; Li, Ping; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicinePrevention of mosquito-borne infectious diseases will require new classes of environmentally safe insecticides and novel mosquito control technologies. Saccharomyces cerevisiae was engineered to express short hairpin RNA (shRNA) corresponding to mosquito Rbfox1 genes. The yeast induced target gene silencing, resulting in larval death that was observed in both laboratory and outdoor semi-field trials conducted on Aedes aegypti. High levels of mortality were also observed during simulated field trials in which adult females consumed yeast delivered through a sugar bait. Mortality correlated with defects in the mosquito brain, in which a role for Rbfox1 as a positive regulator of Notch signaling was identified. The larvicidal and adulticidal activities of the yeast were subsequently confirmed in trials conducted on Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus, yet the yeast had no impact on survival of select non-target arthropods. These studies indicate that yeast RNAi pesticides targeting Rbfox1 could be further developed as broad-based mosquito larvicides and adulticides for deployment in integrated biorational mosquito control programs. These findings also suggest that the species-specificity of attractive targeted sugar baits, a new paradigm for vector control, could potentially be enhanced through RNAi technology, and specifically through the use of yeast-based interfering RNA pesticides.Item Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes(Springer Nature, 2019-05-22) Mysore, Keshava; Li, Ping; Wang, Chien-Wei; Hapairai, Limb K.; Scheel, Nicholas D.; Realey, Jacob S.; Sun, Longhua; Severson, David W.; Wei, Na; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineBACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control.Item Characterization of an adulticidal and larvicidal interfering RNA pesticide that targets a conserved sequence in mosquito G protein-coupled dopamine 1 receptor genes(Elsevier, 2020) Hapairai, Limb K.; Mysore, Keshava; Sun, Longhua; Li, Ping; Wang, Chien-Wei; Scheel, Nicholas D.; Lesnik, Alexandra; Scheel, Max P.; Igiede, Jessica; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineG protein-coupled receptors (GPCRs), key regulators of a variety of critical biological processes, are attractive targets for insecticide development. Given the importance of these receptors in many organisms, including humans, it is critical that novel pesticides directed against GPCRs are designed to be species-specific. Here, we present characterization of an interfering RNA pesticide (IRP) targeting the mosquito GPCR-encoding dopamine 1 receptor (dop1) genes. A small interfering RNA corresponding to dop1 was identified in a screen for IRPs that kill Aedes aegypti during both the adult and larval stages. The 25 bp sequence targeted by this IRP is conserved in the dop1 genes of multiple mosquito species, but not in non-target organisms, indicating that it could function as a biorational mosquito insecticide. Aedes aegypti adults treated through microinjection or attractive toxic sugar bait delivery of small interfering RNA corresponding to the target site exhibited severe neural and behavioral defects and high levels of adult mortality. Likewise, A. aegypti larval consumption of dried inactivated yeast tablets prepared from a Saccharomyces cerevisiae strain engineered to express short hairpin RNA corresponding to the dop1 target site resulted in severe neural defects and larval mortality. Aedes albopictus and Anopheles gambiae adult and larval mortality was also observed following treatment with dop1 IRPs, which were not toxic to non-target arthropods. The results of this investigation indicate that dop1 IRPs can be used for species-specific targeting of dop1 GPCRs and may represent a new biorational strategy for control of both adult and larval mosquitoes.Item Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti(Springer Nature, 2014-02-19) Mysore, Keshava; Andrews, Emily; Li, Ping; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineBackground: Essentially nothing is known about the genetic regulation of olfactory system development in vector mosquitoes, which use olfactory cues to detect blood meal hosts. Studies in Drosophila melanogaster have identified a regulatory matrix of transcription factors that controls pupal/adult odorant receptor (OR) gene expression in olfactory receptor neurons (ORNs). However, it is unclear if transcription factors that function in the D. melanogaster regulatory matrix are required for OR expression in mosquitoes. Furthermore, the regulation of OR expression during development of the larval olfactory system, which is far less complex than that of pupae/adults, is not well understood in any insect, including D. melanogaster. Here, we examine the regulation of OR expression in the developing larval olfactory system of Aedes aegypti, the dengue vector mosquito. Results: A. aegypti bears orthologs of eight transcription factors that regulate OR expression in D. melanogaster pupae/adults. These transcription factors are expressed in A. aegypti larval antennal sensory neurons, and consensus binding sites for these transcription factors reside in the 5' flanking regions of A. aegypti OR genes. Consensus binding sites for Single-minded (Sim) are located adjacent to over half the A. aegypti OR genes, suggesting that this transcription factor functions as a major regulator of mosquito OR expression. To functionally test this hypothesis, chitosan/siRNA nanoparticles were used to target sim during larval olfactory development. These experiments demonstrated that Sim positively regulates expression of a large subset of OR genes, including orco, the obligate co-receptor in the assembly and function of heteromeric OR/Orco complexes. Decreased innervation of the antennal lobe was also noted in sim knockdown larvae. These OR expression and antennal lobe defects correlated with a larval odorant tracking behavioral defect. OR expression and antennal lobe defects were also observed in sim knockdown pupae. Conclusions: The results of this investigation indicate that Sim has multiple functions during larval and pupal olfactory system development in A. aegypti.Item Co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells attenuates human NK cell-mediated degranulation(Frontiers Media, 2023-07-17) Cross-Najafi, Arthur A.; Farag, Kristine; Isidan, Abdulkadir; Li, Wei; Zhang, Wenjun; Lin, Zhansong; Walsh, Julia R.; Lopez, Kevin; Park, Yujin; Higgins, Nancy G.; Cooper, David K. C.; Ekser, Burcin; Li, Ping; Surgery, School of MedicineNatural killer (NK) cells play an important role in immune rejection in solid organ transplantation. To mitigate human NK cell activation in xenotransplantation, introducing inhibitory ligands on xenografts via genetic engineering of pigs may protect the graft from human NK cell-mediated cytotoxicity and ultimately improve xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-G were introduced in an immortalized porcine liver endothelial cell line with disruption of five genes (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin) encoding three major carbohydrate xenoantigens (αGal, Neu5Gc, and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance HLA-E expression on transfected pig cells. We found that co-expression of HLA-E and HLA-G on porcine cells led to a significant reduction in human NK cell activation compared to the cells expressing HLA-E or HLA-G alone and the parental cell line. NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+ population gated from human peripheral blood mononuclear cells. CD107a is a sensitive marker of NK cell activation and correlates with NK cell degranulation and cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells provided a superior inhibition in human xenoreactive NK cells, which may guide further genetic engineering of pigs to prevent human NK cell mediated rejection.Item Cognitive function, body mass index and mortality in a rural elderly Chinese cohort(Springer Nature, 2014-03-26) Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Cheng, Yibin; Su, Liqin; Wang, Chenkun; Ma, Feng; Hake, Ann M.; Kettler, Carla; Chen, Chen; Liu, Jingyi; Bian, Jianchao; Li, Ping; Murrell, Jill R.; Clark, Daniel O.; Hendrie, Hugh C.; Psychiatry, School of MedicineBackground: Previous studies have shown that poor cognition and low body mass index were associated with increased mortality. But few studies have investigated the association between cognition and mortality across the entire cognitive spectrum while adjusting for BMI. The objective of this study is to examine the associations between cognitive function, BMI and 7-year mortality in a rural elderly Chinese cohort. Methods: A prospective cohort of 2,000 Chinese age 65 and over from four rural counties in China were followed for 7-years. Cognitive function, BMI and other covariate information were obtained at baseline. Cox's proportional hazard models were used to determine the effects of cognitive function and BMI on mortality risk. Results: Of participants enrolled, 473 (23.7%) died during follow-up. Both lower cognitive function (HR = 1.48, p = 0.0049) and lower BMI (HR = 1.6, p < 0.0001) were independently associated with increased mortality risk compared to individuals with average cognitive function and normal weight. Higher cognitive function was associated with lower mortality risk (HR = 0.69, p = 0.0312). We found no significant difference in mortality risk between overweight/obese participants and those with normal weight. Conclusions: Cognitive function and BMI were independent predictors of mortality risk. Intervention strategies for increasing cognitive function and maintaining adequate BMI may be important in reducing morality risk in the elderly population.Item Comparison of Artificial Intelligence and Eyeball Method in the Detection of Fatty Liver Disease(2023-07-26) Catron, Evan J.; Passarelli, Robert P.; Danielle, Wilmes; Wei, Barry; Le, Thi M.U.; Li, Ping; Zhang, Wenjun; Lin, Jingmei; Melcher, Mark L.; Mihaylov, Plamen V.; Kubal, Chandrashekhar A.; Mangus, Robert S.; Ekser, BurcinBackground: Quantification of liver fat content relies on visual microscopic inspection of liver biopsies by pathologists. Their percent macrosteatosis (%MaS) estimation is vital in determining donor liver transplantability; however, the eyeball method may vary between observers. Overestimations of %MaS can potentially lead to the discard of viable donor livers. We hypothesize that artificial intelligence (AI) could be helpful in providing a more objective and accurate measurement of %MaS. Methods: Literature review identified HALO (image analysis) and U-Net (deep-learning) as high-accuracy AI programs capable of calculating %MaS in liver biopsies. We compared (i) an experienced pathologist’s and (ii) a transplant surgeon’s eyeball %MaS estimations from de-novo liver transplant (LT) biopsy samples taken 2h post-reperfusion to (iii) the HALO-calculated %MaS (Fig.1). 250 patients had undergone LT at Indiana University between 2020-2021, and 211 had sufficient data for inclusion. Each biopsy was digitized into 5 random non-overlapping tiles at 20x magnification (a total of 1,055 images). We used HALO software for analysis and set the minimum vacuole area to 10μm² to avoid the inclusion of microsteatosis. Microsteatosis was excluded by the pathologist and the surgeon by the eyeball method using the same 1,055 images. Each %MaS estimation was compared with early allograft dysfunction (EAD). EAD is defined by the presence of at least one of the following: INR >1.6 on postoperative day (POD) 7, total bilirubin >10mg/dL on POD7, or AST/ALT >2000IU/L within the first 7 days following LT. Results: Of 211 LTs, 42 (19.9%) had EAD. The mean %MaS estimation of pathologist and transplant surgeon were 6.3% (SD: 11.9%) and 3.2% (SD: 6.4%), respectively. HALO yielded a significantly lower mean %MaS of 2.6% (SD: 2.6%) than the pathologist’s eyeball method (p<0.001). The mean %MaS calculated by HALO was higher in EAD patients than in non-EAD (p=0.032), but this difference did not reach statistical significance in the pathologist’s estimation (p=0.069). Conclusions: Although mean %MaS measurements from all parties were mild (<10%), human eyeball estimations of %MaS were significantly higher than HALO’s %MaS. The HALO-calculated %MaS differed significantly between the EAD and non-EAD LTs which might suggest a possible correlation between the AI’s steatosis analysis and EAD outcomes. However, pathologic variables other than %MaS (necrosis or cholestasis) should be included in future analyses to determine whether %MaS is the dominant parameter predicting EAD. AI is a promising tool to quantify liver steatosis and will help pathologists and transplant surgeons predict liver transplant viability.Item Comparison of porcine corneal decellularization methods and importance of preserving corneal limbus through decellularization(PLOS, 2021-03-05) Isidan, Abdulkadir; Liu, Shaohui; Chen, Angela M.; Zhang, Wenjun; Li, Ping; Smith, Lester J.; Hara, Hidetaka; Cooper, David K. C.; Ekser, Burcin; Surgery, School of MedicineBackground: The aim of this study is to compare the three previously applied, conventional porcine corneal decellularization methods and to demonstrate the importance of preserving the corneal limbus through decellularization. Methods: Fresh, wild-type (with or without) limbus porcine corneas were decellularized using three different methods, including (i) sodium dodecyl sulfate (SDS), (ii) hypertonic saline (HS), and (iii) N2 gas (NG). Post-treatment evaluation was carried out using histological, residual nuclear material, and ultrastructural analyses. Glycerol was used to help reduce the adverse effects of decellularization. The corneas were preserved for two weeks in cornea storage medium. Results: All three decellularization methods reduced the number of keratocytes at different rates in the stromal tissue. However, all methods, except SDS, resulted in the retention of large numbers of cells and cell fragments. The SDS method (0.1% SDS, 48h) resulted in almost 100% decellularization in corneas without limbus. Low decellularization capacity of the NG method (<50%) could make it unfavorable. Although HS method had a more balanced damage-decellularization ratio, its decellularization capacity was lower than SDS method. Preservation of the corneoscleral limbus could partially prevent structural damage and edema, but it would reduce the decellularization capacity. Conclusion: Our results suggest that SDS is a very powerful decellularization method, but it damages the cornea irreversibly. Preserving the corneoscleral limbus reduces the efficiency of decellularization, but also reduces the damage.Item Computational fluid dynamic analysis of bioprinted self-supporting perfused tissue models(Wiley, 2020-03) Sego, T. J.; Prideaux, Matthew; Sterner, Jane; McCarthy, Brian Paul; Li, Ping; Bonewald, Lynda F.; Ekser, Burcin; Tovar, Andres; Smith, Lester Jeshua; Anatomy and Cell Biology, School of MedicineNatural tissues are incorporated with vasculature, which is further integrated with a cardiovascular system responsible for driving perfusion of nutrient‐rich oxygenated blood through the vasculature to support cell metabolism within most cell‐dense tissues. Since scaffold‐free biofabricated tissues being developed into clinical implants, research models, and pharmaceutical testing platforms should similarly exhibit perfused tissue‐like structures, we generated a generalizable biofabrication method resulting in self‐supporting perfused (SSuPer) tissue constructs incorporated with perfusible microchannels and integrated with the modular FABRICA perfusion bioreactor. As proof of concept, we perfused an MLO‐A5 osteoblast‐based SSuPer tissue in the FABRICA. Although our resulting SSuPer tissue replicated vascularization and perfusion observed in situ, supported its own weight, and stained positively for mineral using Von Kossa staining, our in vitro results indicated that computational fluid dynamics (CFD) should be used to drive future construct design and flow application before further tissue biofabrication and perfusion. We built a CFD model of the SSuPer tissue integrated in the FABRICA and analyzed flow characteristics (net force, pressure distribution, shear stress, and oxygen distribution) through five SSuPer tissue microchannel patterns in two flow directions and at increasing flow rates. Important flow parameters include flow direction, fully developed flow, and tissue microchannel diameters matched and aligned with bioreactor flow channels. We observed that the SSuPer tissue platform is capable of providing direct perfusion to tissue constructs and proper culture conditions (oxygenation, with controllable shear and flow rates), indicating that our approach can be used to biofabricate tissue representing primary tissues and that we can model the system in silico.