- Browse by Author
Browsing by Author "Katare, Dewant"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Autonomous Embedded System Enabled 3-D Object Detector: (with Point Cloud and Camera)(IEEE, 2019-09) Katare, Dewant; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyAn Autonomous vehicle or present day smart vehicle is equipped with several ADAS safety features such as Blind Spot Detection, Forward Collision Warning, Lane Departure and Parking Assistance, Surround View System, Vehicular communication System. Recent research utilize deep learning algorithms as a counterfeit for these traditional methods, using optimal sensors. This paper discusses the perception tasks related to autonomous vehicle, specifically the computer-vision approach of 3D object detection and thus proposes a model compatible with embedded system using the RTMaps framework. The proposed model is based on the sensors: camera and Lidar connected to an autonomous embedded system, providing the sensed inputs to the deep learning classifier which on the basis of theses inputs estimates the position and predicts a 3-d bounding box on the physical objects. The Frustum PointNet a contemporary architecture for 3-D object detection is used as base model and is implemented with extended functionality. The architecture is trained and tested on the KITTI dataset and is discussed with the competitive validation precision and accuracy. The Presented model is deployed on the Bluebox 2.0 platform with the RTMaps Embedded framework.Item Exploration of Deep Learning Applications on an Autonomous Embedded Platform (Bluebox 2.0)(2019-12) Katare, Dewant; El-Sharkawy, Mohamed; Rizkalla, Maher; Kim, Dongsoo StephenAn Autonomous vehicle depends on the combination of latest technology or the ADAS safety features such as Adaptive cruise control (ACC), Autonomous Emergency Braking (AEB), Automatic Parking, Blind Spot Monitor, Forward Collision Warning or Avoidance (FCW or FCA), Lane Departure Warning. The current trend follows incorporation of these technologies using the Artificial neural network or Deep neural network, as an imitation of the traditionally used algorithms. Recent research in the field of deep learning and development of competent processors for autonomous or self-driving car have shown amplitude of prospect, but there are many complexities for hardware deployment because of limited resources such as memory, computational power, and energy. Deployment of several mentioned ADAS safety feature using multiple sensors and individual processors, increases the integration complexity and also results in the distribution of the system, which is very pivotal for autonomous vehicles. This thesis attempts to tackle two important adas safety feature: Forward collision Warning, and Object Detection using the machine learning and Deep Neural Networks and there deployment in the autonomous embedded platform. 1. A machine learning based approach for the forward collision warning system in an autonomous vehicle. 2. 3-D object detection using Lidar and Camera which is primarily based on Lidar Point Clouds. The proposed forward collision warning model is based on the forward facing automotive radar providing the sensed input values such as acceleration, velocity and separation distance to a classifier algorithm which on the basis of supervised learning model, alerts the driver of possible collision. Decision Tress, Linear Regression, Support Vector Machine, Stochastic Gradient Descent, and a Fully Connected Neural Network is used for the prediction purpose. The second proposed methods uses object detection architecture, which combines the 2D object detectors and a contemporary 3D deep learning techniques. For this approach, the 2D object detectors is used first, which proposes a 2D bounding box on the images or video frames. Additionally a 3D object detection technique is used where the point clouds are instance segmented and based on raw point clouds density a 3D bounding box is predicted across the previously segmented objects.Item Real-Time 3-D Segmentation on An Autonomous Embedded System: using Point Cloud and Camera(IEEE, 2019-07) Katare, Dewant; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyPresent day autonomous vehicle relies on several sensor technologies for it's autonomous functionality. The sensors based on their type and mounted-location on the vehicle, can be categorized as: line of sight and non-line of sight sensors and are responsible for the different level of autonomy. These line of sight sensors are used for the execution of actions related to localization, object detection and the complete environment understanding. The surrounding or environment understanding for an autonomous vehicle can be achieved by segmentation. Several traditional and deep learning related techniques providing semantic segmentation for an input from camera is already available, however with the advancement in the computing processor, the progression is on developing the deep learning application replacing traditional methods. This paper presents an approach to combine the input of camera and lidar for semantic segmentation purpose. The proposed model for outdoor scene segmentation is based on the frustum pointnet, and ResNet which utilizes the 3d point cloud and camera input for the 3d bounding box prediction across the moving and non-moving object and thus finally recognizing and understanding the scenario at the point-cloud or pixel level. For real time application the model is deployed on the RTMaps framework with Bluebox (an embedded platform for autonomous vehicle). The proposed architecture is trained with the CITYScpaes and the KITTI dataset.