Exploration of Deep Learning Applications on an Autonomous Embedded Platform (Bluebox 2.0)

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-12
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.E.C.E.
Degree Year
2019
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

An Autonomous vehicle depends on the combination of latest technology or the ADAS safety features such as Adaptive cruise control (ACC), Autonomous Emergency Braking (AEB), Automatic Parking, Blind Spot Monitor, Forward Collision Warning or Avoidance (FCW or FCA), Lane Departure Warning. The current trend follows incorporation of these technologies using the Artificial neural network or Deep neural network, as an imitation of the traditionally used algorithms. Recent research in the field of deep learning and development of competent processors for autonomous or self-driving car have shown amplitude of prospect, but there are many complexities for hardware deployment because of limited resources such as memory, computational power, and energy. Deployment of several mentioned ADAS safety feature using multiple sensors and individual processors, increases the integration complexity and also results in the distribution of the system, which is very pivotal for autonomous vehicles.

This thesis attempts to tackle two important adas safety feature: Forward collision Warning, and Object Detection using the machine learning and Deep Neural Networks and there deployment in the autonomous embedded platform.

  1. A machine learning based approach for the forward collision warning system in an autonomous vehicle.
  2. 3-D object detection using Lidar and Camera which is primarily based on Lidar Point Clouds.

The proposed forward collision warning model is based on the forward facing automotive radar providing the sensed input values such as acceleration, velocity and separation distance to a classifier algorithm which on the basis of supervised learning model, alerts the driver of possible collision. Decision Tress, Linear Regression, Support Vector Machine, Stochastic Gradient Descent, and a Fully Connected Neural Network is used for the prediction purpose.

The second proposed methods uses object detection architecture, which combines the 2D object detectors and a contemporary 3D deep learning techniques. For this approach, the 2D object detectors is used first, which proposes a 2D bounding box on the images or video frames. Additionally a 3D object detection technique is used where the point clouds are instance segmented and based on raw point clouds density a 3D bounding box is predicted across the previously segmented objects.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}