- Browse by Author
Browsing by Author "Karahan, Hande"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Deletion of Abi3 gene locus exacerbates neuropathological features of Alzheimer's disease in a mouse model of Aβ amyloidosis(American Association for the Advancement of Science, 2021-11) Karahan, Hande; Smith, Daniel C.; Kim, Byungwook; Dabin, Luke C.; Al-Amin, Md Mamun; Wijeratne, H.R. Sagara; Pennington, Taylor; di Prisco, Gonzalo Viana; McCord, Brianne; Lin, Peter Bor-Chian; Li, Yuxin; Peng, Junmin; Oblak, Adrian L.; Chu, Shaoyou; Atwood, Brady K.; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineRecently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer’s disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid β (Aβ) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout (“Abi3−/−”) mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aβ accumulation and neuroinflammation.Item Deletion of the Alzheimer's disease risk gene Abi3 locus results in obesity and systemic metabolic disruption in mice(Frontiers Media, 2022-12-22) Smith, Daniel C.; Karahan, Hande; Sagara Wijeratne, H. R.; Al-Amin, Mamun; McCord, Brianne; Moon, Younghye; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineAlzheimer’s disease (AD) genetics studies have identified a coding variant within ABI3 gene that increases the risk of developing AD. Recently, we demonstrated that deletion of the Abi3 gene locus dramatically exacerbates AD neuropathology in a transgenic mouse model of amyloidosis. In the course of this AD project, we unexpectedly found that deletion of the Abi3 gene locus resulted in a dramatic obese phenotype in non-transgenic mice. Here, we report our investigation into this serendipitous metabolic finding. Specifically, we demonstrate that mice with deletion of the Abi3 gene locus (Abi3–/–) have dramatically increased body weight and body fat. Further, we determined that Abi3–/– mice have impaired energy expenditure. Additionally, we found that deletion of the Abi3 gene locus altered gene expression within the hypothalamus, particularly within immune-related pathways. Subsequent immunohistological analysis of the central nervous system (CNS) revealed that microglia number and area were decreased specifically within the mediobasal hypothalamus of Abi3–/– mice. Altogether, this investigation establishes the functional importance of the Abi3 gene locus in the regulation of systemic metabolism and maintenance of healthy body weight. While our previous findings indicated the importance of Abi3 in neurodegeneration, this study indicates that Abi3 related functions are also essential for metabolic regulation.Item Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis(Springer Nature, 2024-05-11) Kim, Byungwook; Dabin, Luke Child; Tate, Mason Douglas; Karahan, Hande; Sharify, Ahmad Daniel; Acri, Dominic J.; Al-Amin, Md Mamun; Philtjens, Stéphanie; Smith, Daniel Curtis; Wijeratne, H. R. Sagara; Park, Jung Hyun; Jucker, Mathias; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineSPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.Item Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease(Springer, 2024-08-05) Jury‑Garfe, Nur; Redding‑Ochoa, Javier; You, Yanwen; Martínez, Pablo; Karahan, Hande; Chimal‑Juárez, Enrique; Johnson, Travis S.; Zhang, Jie; Resnick, Susan; Kim, Jungsu; Troncoso, Juan C.; Lasagna‑Reeves, Cristian A.; Medical and Molecular Genetics, School of MedicineAsymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.Item Enhanced microglial dynamics and paucity of tau seeding in the amyloid plaque microenvironment contributes to cognitive resilience in Alzheimer’s disease(bioRxiv, 2023-07-28) Jury-Garfe, Nur; You, Yanwen; Martínez, Pablo; Redding-Ochoa, Javier; Karahan, Hande; Johnson, Travis S.; Zhan, Jie; Kim, Jungsu; Troncoso, Juan C.; Lasagna-Reeves, Cristian A.; Anatomy, Cell Biology and Physiology, School of MedicineAsymptomatic Alzheimer’s disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer’s disease (AD) brain pathology (i.e. Aβ-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aβ that preserves brain health and slows down the progression of AD pathology.Item Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective(De Gruyter, 2019-11-06) Kelicen-Ugur, Pelin; Cincioğlu-Palabıyık, Mehtap; Çelik, Hande; Karahan, Hande; Medical and Molecular Genetics, School of MedicineAromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain's neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens' protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer's disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.Item MicroRNAs on the move: microRNAs in astrocyte-derived ApoE particles regulate neuronal function(Elsevier, 2021) Karahan, Hande; Dabin, Luke C.; Tate, Mason D.; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineIn this issue of Neuron, Li et al. (2021) demonstrate that ApoE lipoprotein particles shuttle miRNAs from astrocytes to neurons, leading to inhibition of cholesterol biosynthesis and an increase in histone acetylation in neurons.Item Network analysis identifies strain-dependent response to tau and tau seeding-associated genes(Rockefeller University Press, 2023) Acri, Dominic J.; You, Yanwen; Tate, Mason D.; Karahan, Hande; Martinez, Pablo; McCord, Brianne; Sharify, A. Daniel; John, Sutha; Kim, Byungwook; Dabin, Luke C.; Philtjens, Stéphanie; Wijeratne, H. R. Sagara; McCray, Tyler J.; Smith, Daniel C.; Bissel, Stephanie J.; Lamb, Bruce T.; Lasagna-Reeves, Cristian A.; Kim, Jungsu; Anatomy, Cell Biology and Physiology, School of MedicinePrevious research demonstrated that genetic heterogeneity is a critical factor in modeling amyloid accumulation and other Alzheimer's disease phenotypes. However, it is unknown what mechanisms underlie these effects of genetic background on modeling tau aggregate-driven pathogenicity. In this study, we induced tau aggregation in wild-derived mice by expressing MAPT. To investigate the effect of genetic background on the action of tau aggregates, we performed RNA sequencing with brains of C57BL/6J, CAST/EiJ, PWK/PhJ, and WSB/EiJ mice (n = 64) and determined core transcriptional signature conserved in all genetic backgrounds and signature unique to wild-derived backgrounds. By measuring tau seeding activity using the cortex, we identified 19 key genes associated with tau seeding and amyloid response. Interestingly, microglial pathways were strongly associated with tau seeding activity in CAST/EiJ and PWK/PhJ backgrounds. Collectively, our study demonstrates that mouse genetic context affects tau-mediated alteration of transcriptome and tau seeding. The gene modules associated with tau seeding provide an important resource to better model tauopathy.Item The effect of Abi3 locus deletion on the progression of Alzheimer's disease-related pathologies(Frontiers Media, 2023-02-21) Karahan, Hande; Smith, Daniel C.; Kim, Byungwook; McCord, Brianne; Mantor, Jordan; John, Sutha K.; Al-Amin, Md Mamun; Dabin, Luke C.; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineHuman genetics studies of Alzheimer’s disease (AD) have identified the ABI3 gene as a candidate risk gene for AD. Because ABI3 is highly expressed in microglia, the brain’s immune cells, it was suggested that ABI3 might impact AD pathogenesis by regulating the immune response. Recent studies suggest that microglia have multifaceted roles in AD. Their immune response and phagocytosis functions can have beneficial effects in the early stages of AD by clearing up amyloid-beta (Aβ) plaques. However, they can be harmful at later stages due to their continuous inflammatory response. Therefore, it is important to understand the role of genes in microglia functions and their impact on AD pathologies along the progression of the disease. To determine the role of ABI3 at the early stage of amyloid pathology, we crossed Abi3 knock-out mice with the 5XFAD Aβ-amyloidosis mouse model and aged them until 4.5-month-old. Here, we demonstrate that deletion of the Abi3 locus increased Aβ plaque deposition, while there was no significant change in microgliosis and astrogliosis. Transcriptomic analysis indicates alterations in the expression of immune genes, such as Tyrobp, Fcer1g, and C1qa. In addition to the transcriptomic changes, we found elevated cytokine protein levels in Abi3 knock-out mouse brains, strengthening the role of ABI3 in neuroinflammation. These findings suggest that loss of ABI3 function may exacerbate AD progression by increasing Aβ accumulation and inflammation starting from earlier stages of the pathology.Item Tubular Human Brain Organoids to Model Microglia-Mediated Neuroinflammation(Royal Society of Chemistry, 2021) Ao, Zheng; Cai, Hongwei; Wu, Zhuhao; Song, Sunghwa; Karahan, Hande; Kim, Byungwook; Lu, Hui-Chen; Kim, Jungsu; Mackie, Ken; Guo, Feng; Medical and Molecular Genetics, School of MedicineHuman brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, we present a tubular organoids-on-a-chip device to generate better organoids and model neuroinflammation. By employing 3D printed hollow mesh scaffolds, our device can be easily incorporated into multiwell-plates for reliable, scalable, and reproducible generation of tubular organoids. By introducing rocking flows through the tubular device channel, our device can perfuse nutrients and oxygen to minimize organoid necrosis and hypoxia, and incorporate immune cells into organoids to model neuro-immune interactions. Compared with conventional protocols, our method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, we applied this method to model the microglia-mediated neuroinflammation after exposure to an opioid. We found isogenic microglia were activated after exposure to an opioid receptor agonist (DAMGO) and transformed back to the homeostatic status with further treatment by a cannabinoid receptor 2 agonist (LY2828360). Importantly, the activated microglia in tubular organoids had a stronger cytokine response compared to those in 2D microglial cultures. Our tubular organoid device is simple, versatile, inexpensive, easy-to-use, and compatible with multiwell-plates, so it can be widely used in common research and clinical laboratory settings. This technology can be broadly used for basic and translational applications in inflammatory diseases including substance use disorders, neural diseases, autoimmune disorders, and infectious diseases.