- Browse by Author
Browsing by Author "Jensen, Amanda R."
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency(AHA, 2019-11-08) Duan, Yaqian; Prasad, Ram; Feng, Dongni; Beli, Eleni; Calzi, Sergio Li; Longhini, Ana Leda F.; Lamendella, Regina; Floyd, Jason L.; Dupont, Mariana; Noothi, Sunil K.; Sreejit, Gopal Krishan; Athmanathan, Baskaran; Wright, Justin; Jensen, Amanda R.; Oudit, Gavin Y.; Markel, Troy A.; Nagareddy, Prabhakara R; Obukhov, Alexander G.; Grant, Maria B.; Anatomy and Cell Biology, School of MedicineRationale: There is incomplete knowledge of the impact of bone marrow (BM) cells on the gut microbiome and gut barrier function. Objective: We postulated that diabetes and systemic angiotensin-converting enzyme 2 (ACE2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. Methods and Results: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from WT, ACE2−/y, Akita (type 1 diabetic, T1D), and ACE2−/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and BM cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2−/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells (MACs), but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2−/y-Akita mice demonstrated a marked increase in peptidoglycan (PGN) producing bacteria. When compared to control cohorts treated with saline, intraperitoneal administration of MACs significantly decreased the microbiome gene expression associated with PGN biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of PGN and intestinal fatty acid binding protein-2 (FABP-2) were observed in plasma of human subjects with T1D (n=21) and Type 2 diabetes (T2D, n=23) compared to non-diabetic controls (n=23). Using human retinal endothelial cells, we determined that PGN activates a non-canonical Toll-like receptor-2 (TLR2) associated MyD88-ARNO-ARF6 signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of PGN on the endothelium. Conclusion: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2−/y-Akita mice can be favorably impacted by exogenous administration of MACs.Item Direct Peritoneal Resuscitation Improves Mesenteric Perfusion by Nitric Oxide Dependent Pathways(Elsevier, 2017-06) Khaneki, Sina; Jensen, Amanda R.; Drucker, Natalie A.; Markel, Troy A.; Department of Surgery, IU School of MedicineBackground Direct peritoneal resuscitation (DPR) has been shown to increase survival after intestinal ischemia and reperfusion injury (I/R). We have previously appreciated that minimum essential medium (MEM), a synthetic cell culture medium with bovine serum, glutamine, and antibiotics, contributes to these benefits. We hypothesized that (1) DPR using MEM as a dialysate would increase mesenteric perfusion, improve intestinal mucosal injury, and limit intestinal and hepatic inflammation after intestinal I/R and (2) these improvements would be dependent on endothelial nitric oxide pathways. Methods Eight-week-old C57Bl6J wild-type (WT) and eNOS Knock Out (eNOS KO) male mice were anesthetized and intestinal ischemia was induced for 60 min. After ischemia, 1 mL of phosphate buffered saline vehicle or MEM was injected into the abdominal cavity. Intestinal perfusion was reassessed after 48 h. Animals were then euthanized, and intestines and livers explanted for histologic and molecular analyses. Results DPR with MEM significantly improved mesenteric perfusion compared with vehicle (phosphate buffered saline) as measured by Laser Doppler Imaging (WT + MEM 91.58 ± 13.74%, WT + Vehicle 44.27 ± 11.93%, P < 0.05); however, these benefits were lost when endothelial nitric oxide signaling pathways were ablated (eNOS KO + MEM 21.72 ± 5.67 %, eNOS KO + Vehicle 45.24± 11.31%). WT mice treated with MEM also had significantly better preservation of their mucosal architecture (WT + MEM Mdn = 1.0, interquartile range [IQR] = 1.25, WT + Vehicle Mdn = 3.0, IQR = 2.0, P < 0.05). When we compared eNOS KO mice treated with either MEM or vehicle the protective effect of MEM disappeared (eNOS KO + MEM Mdn = 2.0, IQR = 2.25, eNOS KO + Vehicle Mdn = 2.0, IQR = 1.0 P > 0.05). Intestinal levels of interleukin (IL)-1β were increased in WT animals treated with MEM compared with eNOS KOs, whereas concentrations of intestinal IL-6 were similar between groups. Hepatic levels of both IL-1β and IL-6 were significantly elevated in eNOS KOs compared with WT treated with MEM. Conclusions DPR with MEM has significant therapeutic potential for improving mesenteric perfusion, intestinal injury, and the local inflammatory response after intestinal I/R. These benefits appear to be dependent on nitric oxide signaling within the endothelium.Item Harvest Tissue Source Does Not Alter the Protective Power of Stromal Cell Therapy Following Intestinal Ischemia and Reperfusion Injury(Elsevier, 2016-08) Jensen, Amanda R.; Manning, Morenci M.; Khaneki, Sina; Drucker, Natalie A.; Markel, Troy A.; Medicine, School of MedicineBackground Transplantation of mesenchymal stromal cells (MSCs) may be a novel treatment for intestinal ischemia. The optimal stromal cell source that could yield maximal protection following injury, however, has not been identified. We hypothesized that: 1) MSCs would increase survival and mesenteric perfusion, preserve intestinal histological architecture, and limit inflammation following intestinal ischemia and reperfusion injury (I/R), and 2) MSCs harvested from different sources of tissue would have equivalent protective properties to the intestine following I/R. Methods Adult male mice were anesthetized and a midline laparotomy performed. The intestines were eviscerated, the small bowel mesenteric root identified, and baseline intestinal perfusion was determined using Laser Doppler Imaging (LDI). Intestinal ischemia was established by temporarily occluding the superior mesenteric artery for 60 minutes with a non-crushing clamp. Following ischemia, the clamp was removed and the intestines were allowed to recover. Prior to abdominal closure, 2 × 106 human umbilical (USCs), bone-marrow (BMSCs) derived MSCs, or keratinocytes in 250μl of phosphate-buffered saline (PBS) vehicle were injected into the peritoneum. Animals were allowed to recover for 12 or 24 hours (perfusion, histology, inflammatory studies), or 7 days (survival studies). Survival data was analyzed using log rank test. Perfusion was expressed as percentage of baseline and 12 and 24 hour data was analyzed using one way ANOVA and student’s t-test. Non parametric data was compared using Mann-Whitney-U test. A p-value of less than 0.05 was significant. Results All MSCs increased seven day survival following I/R and were superior to vehicle or keratinocytes (P<0.05). All MSCs increased mesenteric perfusion above vehicle at 12 and 24 hours following injury (P<0.05). All MSCs provided superior perfusion compared to keratinocytes at 24 hours post-injury (P<0.05). Administration of each MSC line improved intestinal histology after I/R (P<0.05). Multiple pro-inflammatory chemokines were down-regulated following application of MSCs suggesting a decreased inflammatory response following MSC therapy. Conclusion Transplantation of MSCs following intestinal I/R, irrespective of source tissue, significantly increases survival and mesenteric perfusion while limiting intestinal damage and inflammation. Further studies are needed to identify the mechanism that these cells utilize to promote improved outcomes following injury.Item Human Mesenchymal Stem Cell Hydrogen Sulfide Production Critically Impacts the Release of Other Paracrine Mediators Following Injury(Elsevier, 2020-10) Markel, Troy A.; Drucker, Natalie A.; Jensen, Amanda R.; Olson, Kenneth R.; Surgery, School of MedicineBackground: The use of mesenchymal stem cells (MSCs) for treatment during ischemia is novel. Hydrogen sulfide (H2S) is an important paracrine mediator that is released from MSCs to facilitate angiogenesis and vasodilation. Three enzymes, cystathionine-beta-synthase (CBS), cystathionine-gamma-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase (MPST), are mainly responsible for H2S production. However, it is unclear how these enzymes impact the production of other critical growth factors and chemokines. We hypothesized that the enzymes responsible for H2S production in human MSCs would also critically regulate other growth factors and chemokines. Materials and methods: Human MSCs were transfected with CBS, MPST, CSE, or negative control small interfering RNA. Knockdown of enzymes was confirmed by polymerase chain reaction. Cells were plated in 12-well plates at 100,000 cells per well and stimulated with tumor necrosis factor-α (TNF-α; 50 ng/mL), lipopolysaccharide (LPS; 200 ng/mL), or 5% hypoxia for 24 h. Supernatants were collected, and cytokines measured by multiplex beaded assay. Data were compared with the Mann-Whitney U-test, and P < 0.05 was significant. Results: TNF-α, LPS, and hypoxia effectively stimulated MSCs. Granulocyte colony-stimulating factor (GCSF), epidermal growth factor, fibroblast growth factor, granulocyte/monocyte colony-stimulating factor (GMCSF), vascular endothelial growth factor, and interferon gamma-inducible protein 10 were all significantly elevated when CSE was knocked down during TNF-α stimulation (P < 0.05). Knockdown of MPST during LPS stimulation more readily increased GCSF and epidermal growth factor but decreased GMCSF (P < 0.05). CBS knockdown decreased production of GCSF, fibroblast growth factor, GMCSF, and vascular endothelial growth factor (P < 0.05) after hypoxia. Conclusions: The enzymes that produce H2S in MSCs are also responsible for the production of other stem cell paracrine mediators under stressful stimuli. Therefore, reprogramming MSCs to endogenously produce more H2S as a therapeutic intervention could also critically impact other paracrine mediators, which may alter the desired beneficial effects.Item Human Mesenchymal Stromal Cells Decrease Mortality Following Intestinal Ischemia and Reperfusion Injury(Elsevier, 2015-11) Markel, Troy A.; Crafts, Trevor D.; Jensen, Amanda R.; Hunsberger, E. Bailey; Department of Surgery, IU School of MedicineBackground Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow–derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. Methods Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 106 hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. Results hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. Conclusions Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia.Item Hydrogen Sulfide Donor GYY4137 Acts Through Endothelial Nitric Oxide to Protect Intestine in Murine Models of Necrotizing Enterocolitis and Intestinal Ischemia(Elsevier, 2019-02) Drucker, Natalie A.; Jensen, Amanda R.; Te Winkel, Pieter Jan; Markel, Troy A.; Surgery, School of MedicineBACKGROUND: Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide, a gasotransmitter that is protective against intestinal injury in experimental NEC, likely through protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated through endothelial nitric oxide synthase-dependent pathways. METHODS: NEC was induced in C57BL/6 wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily intraperitoneal injections of 50 mg/kg GYY4137 or phosphate buffered saline vehicle. In separate groups, adult male WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 min. Before abdominal closure, 50 mg/kg GYY4137 or phosphate buffered saline vehicle was administered into the peritoneal cavity. Laser doppler imaging was used to assess mesenteric perfusion of pups at baseline and on postnatal day 9, and the adult mice at baseline and 24 h after ischemic insult. After euthanasia, the terminal ileum of each animal was fixed, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Sections were blindly graded using published injury scores. Intestinal tissue was homogenized and cytokines measured by ELISA. Data were compared using Mann-Whitney U test, and P-values <0.05 were significant. RESULTS: After NEC and ischemia reperfusion (I/R) injury, GYY4137 improved perfusion in WT mice compared to vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences noted in Interleukin 6 and vascular endothelial growth factor. CONCLUSIONS: GYY4137, a long-acting donor of hydrogen sulfide, has potential as a therapeutic compound for NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways.Item Hydrogen sulfide improves intestinal recovery following ischemia by endothelial nitric oxide-dependent mechanisms(American Physiological Society, 2017-05-01) Jensen, Amanda R.; Drucker, Natalie A.; Khaneki, Sina; Ferkowicz, Michael J.; Markel, Troy A.; Surgery, School of MedicineHydrogen sulfide (H2S) is an endogenous gasotransmitter that has vasodilatory properties. It may be a novel therapy for intestinal ischemia-reperfusion (I/R) injury. We hypothesized that 1) H2S would improve postischemic survival, mesenteric perfusion, mucosal injury, and inflammation compared with vehicle and 2) the benefits of H2S would be mediated through endothelial nitric oxide. C57BL/6J wild-type and endothelial nitric oxide synthase knockout (eNOS KO) mice were anesthetized, and a midline laparotomy was performed. Intestines were eviscerated, the small bowel mesenteric root identified, and baseline intestinal perfusion was determined using laser Doppler. Intestinal ischemia was established by temporarily occluding the superior mesenteric artery. Following ischemia, the clamp was removed, and the intestines were allowed to recover. Either sodium hydrosulfide (2 nmol/kg or 2 µmol/kg NaHS) in PBS vehicle or vehicle only was injected into the peritoneum. Animals were allowed to recover and were assessed for mesenteric perfusion, mucosal injury, and intestinal cytokines. P values < 0.05 were significant. H2S improved mesenteric perfusion and mucosal injury scores following I/R injury. However, in the setting of eNOS ablation, there was no improvement in these parameters with H2S therapy. Application of H2S also resulted in lower levels of intestinal cytokine production following I/R. Intraperitoneal H2S therapy can improve mesenteric perfusion, intestinal mucosal injury, and intestinal inflammation following I/R. The benefits of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.NEW & NOTEWORTHY H2S is a gaseous mediator that acts as an anti-inflammatory agent contributing to gastrointestinal mucosal defense. It promotes vascular dilation, mucosal repair, and resolution of inflammation following intestinal ischemia and may be exploited as a novel therapeutic agent. It is unclear whether H2S works through nitric oxide-dependent pathways in the intestine. We appreciate that H2S was able to improve postischemic recovery of mesenteric perfusion, mucosal integrity, and inflammation. The beneficial effects of H2S appear to be mediated through endothelial nitric oxide-dependent pathways.Item Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis(Elsevier, 2018) Drucker, Natalie A.; Jensen, Amanda R.; Ferkowicz, Michael; Markel, Troy A.; Surgery, School of MedicineBackground Necrotizing enterocolitis (NEC) continues to be a morbid surgical condition among preterm infants. Novel therapies for this condition are desperately needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has been found to have beneficial properties. We therefore hypothesized that intraperitoneal injection of various H2S donors would improve clinical outcomes, increase intestinal perfusion, and reduce intestinal injury in an experimental mouse model of necrotizing enterocolitis. Methods NEC was induced in five-day-old mouse C57BL/6 mouse pups through maternal separation, formula feeding, and intermittent hypoxic and hypothermic stress. The control group (n = 10) remained with their mother and breastfed ad lib. Experimental groups (n = 10/group) received intraperitoneal injections of phosphate buffered saline (PBS) vehicle or one of the following H2S donors: (1) GYY4137, 50 mg/kg daily; (2) Sodium sulfide (Na2S), 20 mg/kg three times daily; (3) AP39, 0.16 mg/kg daily. Pups were monitored for weight gain, clinical status, and intestinal perfusion via transcutaneous Laser Doppler Imaging (LDI). After sacrifice on day nine, intestinal appearance and histology were scored and cytokines were measured in tissue homogenates of intestine, liver, and lung. Data were compared with Mann–Whitney and p < 0.05 was considered significant. Results Clinical score and weight gain were significantly improved in all three H2S-treated groups as compared to vehicle (p < 0.05 for all groups). Intestinal perfusion of the vehicle group was 22% of baseline while the GYY4137 group was 38.7% (p = 0.0103), Na2S was 47.0% (p = 0.0040), and AP39 was 43.0% (p = 0.0018). The vehicle group had a median histology score of 2.5, while the GYY4137 group's was 1 (p = 0.0013), Na2S was 0.5 (p = 0.0004), and AP39 was 0.5 (p = 0.0001). Cytokine analysis of the intestine of the H2S-treated groups revealed levels closer to breastfed pups as compared to vehicle (p < 0.05 for all groups). Conclusion Intraperitoneal administration of H2S protects against development of NEC by improving mesenteric perfusion, and by limiting mucosal injury and altering the tissue inflammatory response. Further experimentation is necessary to elucidate downstream mechanisms prior to clinical implementation.Item Hydrogen Sulfide: A Potential Novel Therapy for the Treatment of Ischemia(Wolters Kluwer, 2017-11) Jensen, Amanda R.; Drucker, Natalie A.; Khaneki, Sina; Surgery, School of MedicineHydrogen sulfide (H2S) is a novel signaling molecule most recently found to be of fundamental importance in cellular function as a regulator of apoptosis, inflammation, and perfusion. Mechanisms of endogenous H2S signaling are poorly understood; however, signal transmission is thought to occur via persulfidation at reactive cysteine residues on proteins. Although much has been discovered about how H2S is synthesized in the body, less is known about how it is metabolized. Recent studies have discovered a multitude of different targets for H2S therapy, including those related to protein modification, intracellular signaling, and ion channel depolarization. The most difficult part of studying hydrogen sulfide has been finding a way to accurately and reproducibly measure it. The purpose of this review is to: elaborate on the biosynthesis and catabolism of H2S in the human body, review current knowledge of the mechanisms of action of this gas in relation to ischemic injury, define strategies for physiological measurement of H2S in biological systems, and review potential novel therapies that use H2S for treatment.Item Loss of Endothelial Nitric Oxide Synthase Exacerbates Intestinal and Lung Injury in Experimental Necrotizing Enterocolitis(Elsevier, 2018) Drucker, Natalie A.; Jensen, Amanda R.; te Winkel, Jan P.; Ferkowicz, Michael J.; Markel, Troy A.; Surgery, School of MedicineBackground Necrotizing enterocolitis (NEC) continues to be a devastating condition among preterm infants. Nitric oxide, which is synthesized in the intestine by endothelial nitric oxide synthase (eNOS), acts as a potent vasodilator and antioxidant within the mesentery and may play a role in prevention of NEC. We hypothesized that loss of endothelial nitric oxide would worsen both intestinal and associated lung injury and increase local and systemic inflammation during experimental NEC. Methods NEC was induced in five-day-old wild type (WT) and eNOS-knockout (eNOSKO) mouse pups. Experimental groups (n = 10) were formula fed and subjected to intermittent hypoxic and hypothermic stress, while control groups (n = 10) remained with their mother to breastfeed. Pups were monitored by daily clinical assessment. After sacrifice on day nine, intestine and lung were assessed for injury, and cytokines were measured in tissue homogenates by ELISA. Data were compared with Mann–Whitney, and p < 0.05 was significant. Results Each NEC group was compared to its respective strain’s breastfed control to facilitate comparisons between the groups. Both NEC groups were significantly sicker than their breastfed controls. eNOSKO NEC animals had a median clinical assessment score of 3 (IQR = 1–5), and the WT NEC animal’s median score was 3 (IQR = 2–5). Despite similar clinical scores, intestinal injury was significantly worse in the eNOSKO NEC groups compared to WT NEC groups (median injury scores of 3.25 (IQR = 2.25–3.625) and 2 (IQR = 1–3), respectively (p = 0.0474). Associated lung injury was significantly worse in the eNOSKO NEC group as compared to the WT NEC group (median scores of 8.5 (IQR = 6.75–11.25) and 6.5 (IQR = 5–7.5), respectively, p = 0.0391). Interestingly, cytokines in both tissues were very different between the two groups, with varying effects noted for each cytokine (IL-6, IL-1β, VEGF, and IL-12) in both tissues. Conclusion Nitric oxide from eNOS plays a key role in preventing the development of NEC. Without eNOS function, both intestinal and lung injuries are more severe, and the inflammatory cascade is significantly altered. Further studies are needed to determine how eNOS-derived nitric oxide facilitates these beneficial effects.