- Browse by Author
Browsing by Author "Huang, Heng"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item An interpretable Alzheimer's disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification(Frontiers Media, 2023-10-26) Suh, Erica H.; Lee, Garam; Jung, Sang-Hyuk; Wen, Zixuan; Bao, Jingxuan; Nho, Kwangsik; Huang, Heng; Davatzikos, Christos; Saykin, Andrew J.; Thompson, Paul M.; Shen, Li; Kim, Dokyoon; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineIntroduction: Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk score for AD, to better predict risk of disease by using an optimized list of relevant genetic risk factors. Methods: Using whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 1,545), we selected 20 genes that exhibited the strongest correlations with FDG-PET and AV45-PET, recognized neuroimaging biomarkers that detect functional brain changes in AD. This subset of genes was incorporated into adORS to assess, in comparison to PRS, the prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk stratification of the ADNI cohort, and interpretability of the genetic information included in the scores. Results: adORS improved AUC scores over PRS in both CN vs. AD classification and MCI conversion prediction. The oligogenic model also refined risk-based stratification, even without the assistance of APOE, thus reflecting the true prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and CD46, have been observed in similar neurodegenerative disorders and/or are supported by AD-related literature. Discussion: Compared to conventional PRS, adORS may prove to be a more appropriate choice of differentiating patients into high or low genetic risk of AD in clinical studies or settings. Additionally, the ability to interpret specific genetic information allows the focus to be shifted from general relative risk based on a given population to the information that adORS can provide for a single individual, thus permitting the possibility of personalized treatments for AD.Item Distance-weighted Sinkhorn loss for Alzheimer's disease classification(Elsevier, 2024-02-12) Wang, Zexuan; Zhan, Qipeng; Tong, Boning; Yang, Shu; Hou, Bojian; Huang, Heng; Saykin, Andrew J.; Thompson, Paul M.; Davatzikos, Christos; Shen, Li; Radiology and Imaging Sciences, School of MedicineTraditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.Item GN-SCCA: GraphNet based Sparse Canonical Correlation Analysis for Brain Imaging Genetics(2015) Du, Lei; Yan, Jingwen; Kim, Sungeun; Risacher, Shannon L.; Huang, Heng; Inlow, Mark; Moore, Jason H.; Saykin, Andrew J.; Shen, Li; Department of Radiology and Imaging Sciences, IU School of MedicineIdentifying associations between genetic variants and neuroimaging quantitative traits (QTs) is a popular research topic in brain imaging genetics. Sparse canonical correlation analysis (SCCA) has been widely used to reveal complex multi-SNP-multi-QT associations. Several SCCA methods explicitly incorporate prior knowledge into the model and intend to uncover the hidden structure informed by the prior knowledge. We propose a novel structured SCCA method using Graph constrained Elastic-Net (GraphNet) regularizer to not only discover important associations, but also induce smoothness between coefficients that are adjacent in the graph. In addition, the proposed method incorporates the covariance structure information usually ignored by most SCCA methods. Experiments on simulated and real imaging genetic data show that, the proposed method not only outperforms a widely used SCCA method but also yields an easy-to-interpret biological findings.Item Human connectome module pattern detection using a new multi-graph MinMax cut model(Springer, 2014) Wang, De; Wang, Yang; Nie, Feiping; Cai, Weidong; Saykin, Andrew J.; Shen, Li; Huang, Heng; Department of Radiology and Imaging Sciences, IU School of MedicineMany recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.Item Identifying Connectome Module Patterns via New Balanced Multi-Graph Normalized Cut.(Springer, 2015-10) Gao, Hongchang; Cai, Chengtao; Yan, Jingwen; Yan, Lin; Cortes, Joaquin Goni; Wang, Yang; Nie, Feiping; West, John; Saykin, Andrew J.; Shen, Li; Huang, Heng; Department of Radiology and Imaging Sciences, IU School of MedicineComputational tools for the analysis of complex biological networks are lacking in human connectome research. Especially, how to discover the brain network patterns shared by a group of subjects is a challenging computational neuroscience problem. Although some single graph clustering methods can be extended to solve the multi-graph cases, the discovered network patterns are often imbalanced, e.g. isolated points. To address these problems, we propose a novel indicator constrained and balanced multi-graph normalized cut method to identify the connectome module patterns from the connectivity brain networks of the targeted subject group. We evaluated our method by analyzing the weighted fiber connectivity networks.Item IMAGING GENOMICS(2018) Huang, Heng; Shen, L. I.; Thompson, Paul M.; Huang, Kun; Huang, Junzhou; Yang, Lin; Radiology and Imaging Sciences, School of MedicineItem Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-Learning Predictive Model(Springer, 2017-05) Wang, Xiaoqian; Yan, Jingwen; Yao, Xiaohui; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Saykin, Andrew J.; Shen, Li; Huang, Heng; Radiology and Imaging Sciences, School of MedicineWith rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.Item Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning(Office of the Vice Chancellor for Research, 2013-04-05) Yan, Jingwen; Risacher, Shannon L.; Kim, Sungeun; Simon, Jacqueline C.; Li, Taiyong; Wan, Jing; Wang, Hua; Huang, Heng; Saykin, Andrew J.; Shen, LiRegression models have been widely studied to investigate whether multimodal neuroimaging measures can be used as effective biomarkers for predicting cognitive outcomes in the study of Alzheimer's Disease (AD). Most existing models overlook the interrelated structures either within neuroimaging measures or between cognitive outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose to incorporate an L21 norm and/or a group L21 norm (G21 norm) in the regression models. Using ADNI-1 and ADNI-GO/2 data, we apply these models to examining the ability of structural MRI and AV-45 PET scans for predicting cognitive measures including ADAS and RAVLT scores. We focus our analyses on the participants with mild cognitive impairment (MCI), a prodromal stage of AD, in order to identify useful patterns for early detection. Compared with traditional linear and ridge regression methods, these new models not only demonstrate superior and more stable predictive performances, but also identify a small set of imaging markers that are biologically meaningful.Item Network-guided sparse learning for predicting cognitive outcomes from MRI measures(Springer, 2013) Yan, Jingwen; Huang, Heng; Risacher, Shannon L.; Kim, Sungeun; Inlow, Mark; Moore, Jason H.; Saykin, Andrew J.; Shen, Li; Department of Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. In particular, sparse models have been proposed to identify the optimal imaging markers with high prediction power. However, the complex relationship among imaging markers are often overlooked or simplified in the existing methods. To address this issue, we present a new sparse learning method by introducing a novel network term to more flexibly model the relationship among imaging markers. The proposed algorithm is applied to the ADNI study for predicting cognitive outcomes using MRI scans. The effectiveness of our method is demonstrated by its improved prediction performance over several state-of-the-art competing methods and accurate identification of cognition-relevant imaging markers that are biologically meaningful.Item New Probabilistic Multi-Graph Decomposition Model to Identify Consistent Human Brain Network Modules(IEEE Xplore Digital Library, 2016-12) Luo, Dijun; Huo, Zhouyuan; Wang, Yang; Saykin, Andrew J.; Shen, Li; Huang, Heng; Radiology and Imaging Sciences, School of MedicineMany recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding large-scale brain networks that underlie higher-level cognition in human. However, suitable network analysis computational tools are still lacking in human brain connectivity research. To address this problem, we propose a novel probabilistic multi-graph decomposition model to identify consistent network modules from the brain connectivity networks of the studied subjects. At first, we propose a new probabilistic graph decomposition model to address the high computational complexity issue in existing stochastic block models. After that, we further extend our new probabilistic graph decomposition model for multiple networks/graphs to identify the shared modules cross multiple brain networks by simultaneously incorporating multiple networks and predicting the hidden block state variables. We also derive an efficient optimization algorithm to solve the proposed objective and estimate the model parameters. We validate our method by analyzing both the weighted fiber connectivity networks constructed from DTI images and the standard human face image clustering benchmark data sets. The promising empirical results demonstrate the superior performance of our proposed method.