ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Horan, Daniel J."

Now showing 1 - 10 of 20
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Co-deletion of Lrp5 and Lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration
    (Elsevier, 2021-02) Lim, Kyung-Eun; Bullock, Whitney A.; Horan, Daniel J.; Williams, Bart O.; Warman, Matthew L.; Robling, Alexander G.; Anatomy and Cell Biology, School of Medicine
    The cysteine knot protein sclerostin is an osteocyte-derived secreted inhibitor of the Wnt co-receptors LRP5 and LRP6. LRP5 plays a dominant role in bone homeostasis, but we previously reported that Sost/sclerostin suppression significantly increased osteogenesis regardless of Lrp5 presence or absence. Those observations suggested that the bone forming effects of sclerostin inhibition can occur through Lrp6 (when Lrp5 is suppressed), or through other yet undiscovered mechanisms independent of Lrp5/6. To distinguish between these two possibilities, we generated mice with compound deletion of Lrp5 and Lrp6 selectively in bone, and treated them with sclerostin monoclonal antibody (Scl-mAb). All mice were homozygous flox for both Lrp5 and Lrp6 (Lrp5f/f; Lrp6f/f), and varied only in whether or not they carried the Dmp1-Cre transgene. Positive (Cre+) and negative (Cre−) mice were injected with Scl-mAb or vehicle from 4.5 to 14 weeks of age. Vehicle-treated Cre+ mice exhibited significantly reduced skeletal properties compared to vehicle-treated Cre− mice, as assessed by DXA, μCT, pQCT, and histology, indicating that Lrp5/6 deletions were effective and efficient. Scl-mAb treatment improved nearly every bone-related parameter among Cre− mice, but the same treatment in Cre+ mice resulted in little to no improvement in skeletal properties. For the few endpoints where Cre+ mice responded to Scl-mAb, it is likely that antibody-induced promotion of Wnt signaling occurred in cell types earlier in the mesenchymal/osteoblast differentiation pathway than the Dmp1-expressing stage. This latter conclusion was supported by changes in some histomorphometric parameters. In conclusion, unlike with the deletion of Lrp5 alone, the bone-selective late-stage co-deletion of Lrp5 and Lrp6 significantly impairs or completely nullifies the osteogenic action of Scl-mAb, and highlights a major role for both Lrp5 and Lrp6 in the mechanism of action for the bone-building effects of sclerostin antibody.
  • Loading...
    Thumbnail Image
    Item
    Conditional Deletion of Sost in MSC‐derived lineages Identifies Specific Cell Type Contributions to Bone Mass and B Cell Development
    (Wiley, 2018) Yee, Cristal S.; Manilay, Jennifer O.; Chang, Jiun C.; Hum, Nicholas R.; Murugesh, Deepa K.; Bajwa, Jamila; Mendez, Melanie E.; Economides, Aris E.; Horan, Daniel J.; Robling, Alexander G.; Loots, Gabriela G.; Anatomy and Cell Biology, School of Medicine
    Sclerostin (Sost) is a negative regulator of bone formation and blocking its function via antibodies has shown great therapeutic promise by increasing both bone mass in humans and animal models. Sclerostin deletion in Sost knockout mice (Sost‐/‐) causes high bone mass (HBM) similar to Sclerosteosis patients. Sost‐/‐ mice have been shown to display an up to 300% increase in bone volume/total volume (BV/TV), relative to aged matched controls, and it has been postulated that the main source of skeletal Sclerostin is the osteocyte. To understand the cell‐type specific contributions to the HBM phenotype described in Sost‐/‐ mice, as well as to address the endocrine and paracrine mode of action of sclerostin, we examined the skeletal phenotypes of conditional Sost loss‐of‐function (SostiCOIN/iCOIN) mice with specific deletions in (1) the limb mesenchyme (Prx1‐Cre; targets osteoprogenitors and their progeny); (2) mid‐stage osteoblasts and their progenitors (Col1‐Cre); (3) mature osteocytes (Dmp1‐Cre) and (4) hypertrophic chondrocytes and their progenitors (ColX‐Cre). All conditional alleles resulted in significant increases in bone mass in trabecular bone in both the femur and lumbar vertebrae, but only Prx1‐Cre deletion fully recapitulated the amplitude of the HBM phenotype in the appendicular skeleton and the B cell defect described in the global knockout. Despite wildtype expression of Sost in the axial skeleton of Prx1‐Cre deleted mice, these mice also had a significant increase in bone mass in the vertebrae, but the Sclerostin released in circulation by the axial skeleton did not affect bone parameters in the appendicular skeleton. Also, both Col1 and Dmp1 deletion resulted in a similar 80% significant increase in trabecular bone mass, but only Col1 and Prx1 deletion resulted in a significant increase in cortical thickness. We conclude that several cell types within the Prx1‐osteoprogenitor derived lineages contribute significant amounts of Sclerostin protein to the paracrine pool of Sost, in bone.
  • Loading...
    Thumbnail Image
    Item
    Conditional Loss of Nmp4 in Mesenchymal Stem Progenitor Cells Enhances PTH-Induced Bone Formation
    (Oxford University Press, 2023) Atkinson, Emily G.; Adaway, Michele; Horan, Daniel J.; Korff, Crystal; Klunk, Angela; Orr, Ashley L.; Ratz, Katherine; Bellido, Teresita; Plotkin, Lilian I.; Robling, Alexander G.; Bidwell, Joseph P.; Anatomy, Cell Biology and Physiology, School of Medicine
    Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis. Yet, FDA-approved osteoanabolics, e.g., parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice, exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+ to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+ targeting mature osteoblasts and (iii) Dmp1Cre+ to disable Nmp4 in osteocytes. Virgin female Cre+ and Cre− mice (10wks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1–34 at 30μg/kg, or vehicle for 4wks or 7wks. Skeletal response was assessed using dual-energy X-ray absorptiometry, microcomputed tomography, bone histomorphometry and serum analysis for remodeling markers. Nmp4fl/fl;Prx1Cre+ mice virtually phenocopied the global Nmp4−/− skeleton in the femur, i.e., a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared to their Nmp4fl/fl;Prx1Cre− controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl;BglapCre+) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl;Dmp1Cre+) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4−/− Prx1-expressing MSPCs drive the improved response to PTH therapy, and that this gene has stage-specific effects on osteoanabolism.
  • Loading...
    Thumbnail Image
    Item
    Exogenous Oncostatin M Induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis
    (Elsevier, 2022) Jengelley, Daenique H. A.; Wang, Meijing; Narasimhan, Ashok; Rupert, Joseph E.; Young, Andrew R.; Zhong, Xiaoling; Horan, Daniel J.; Robling, Alexander G.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Biochemistry and Molecular Biology, School of Medicine
    Musculoskeletal diseases such as muscular dystrophy, cachexia, osteoarthritis, and rheumatoid arthritis impair overall physical health and reduce survival. Patients suffer from pain, dysfunction, and dysmobility due to inflammation and fibrosis in bones, muscles, and joints, both locally and systemically. The Interleukin-6 (IL-6) family of cytokines, most notably IL-6, is implicated in musculoskeletal disorders and cachexia. Here we show elevated circulating levels of OSM in murine pancreatic cancer cachexia and evaluate the effects of the IL-6 family member, Oncostatin M (OSM), on muscle and bone using adeno-associated virus (AAV) mediated over-expression of murine OSM in wildtype and IL-6 deficient mice. Initial studies with high titer AAV-OSM injection yielded high circulating OSM and IL-6, thrombocytosis, inflammation, and 60% mortality without muscle loss within 4 days. Subsequently, to mimic OSM levels in cachexia, a lower titer of AAV-OSM was used in wildtype and Il6 null mice, observing effects out to 4 weeks and 12 weeks. AAV-OSM caused muscle atrophy and fibrosis in the gastrocnemius, tibialis anterior, and quadriceps of the injected limb, but these effects were not observed on the non-injected side. In contrast, OSM induced both local and distant trabecular bone loss as shown by reduced bone volume, trabecular number, and thickness, and increased trabecular separation. OSM caused cardiac dysfunction including reduced ejection fraction and reduced fractional shortening. RNA-sequencing of cardiac muscle revealed upregulation of genes related to inflammation and fibrosis. None of these effects were different in IL-6 knockout mice. Thus, OSM induces local muscle atrophy, systemic bone loss, tissue fibrosis, and cardiac dysfunction independently of IL-6, suggesting a role for OSM in musculoskeletal conditions with these characteristics, including cancer cachexia.
  • Loading...
    Thumbnail Image
    Item
    Expression of a Degradation‐Resistant β‐Catenin Mutant in Osteocytes Protects the Skeleton From Mechanodeprivation‐Induced Bone Wasting
    (Wiley, 2019) Bullock, Whitney A.; Hoggatt, April; Horan, Daniel J.; Lewis, Karl; Yokota, Hiroki; Hann, Steven; Warman, Matthew L.; Sebastian, Aimy; Loots, Gabriela G.; Pavalko, Fredrick M.; Robling, Alexander G.; Anatomy and Cell Biology, IU School of Medicine
    Mechanical stimulation is a key regulator of bone mass, maintenance, and turnover. Wnt signaling is a key regulator of mechanotransduction in bone, but the role of β‐catenin—an intracellular signaling node in the canonical Wnt pathway—in disuse mechanotransduction is not defined. Using the β‐catenin exon 3 flox (constitutively active [CA]) mouse model, in conjunction with a tamoxifen‐inducible, osteocyte‐selective Cre driver, we evaluated the effects of degradation‐resistant β‐catenin on bone properties during disuse. We hypothesized that if β‐catenin plays an important role in Wnt‐mediated osteoprotection, then artificial stabilization of β‐catenin in osteocytes would protect the limbs from disuse‐induced bone wasting. Two disuse models were tested: tail suspension, which models fluid shift, and botulinum‐toxin (botox)‐induced muscle paralysis, which models loss of muscle force. Tail suspension was associated with a significant loss of tibial bone mass and density, reduced architectural properties, and decreased bone formation indices in uninduced (control) mice, as assessed by dual‐energy X‐ray absorptiometry (DXA), micro‐computed tomography (µCT), and histomorphometry. Activation of the βcatCA allele in tail‐suspended mice resulted in little to no change in those properties; ie, these mice were protected from bone loss. Similar protective effects were observed among botox‐treated mice when the βcatCA was activated. RNAseq analysis of altered gene regulation in tail‐suspended mice yielded 35 genes, including Wnt11, Gli1, Nell1, Gdf5, and Pgf, which were significantly differentially regulated between tail‐suspended β‐catenin stabilized mice and tail‐suspended nonstabilized mice. Our findings indicate that selectively targeting/blocking of β‐catenin degradation in bone cells could have therapeutic implications in mechanically induced bone disease.
  • Loading...
    Thumbnail Image
    Item
    Gemcitabine plus nab-paclitaxel preserves skeletal and cardiac mass and function in a murine model of pancreatic cancer cachexia
    (bioRxiv, 2023-04-18) Narasimhan, Ashok; Jengelley, Daenique H. A.; Huot, Joshua R.; Umberger, Tara S.; Doud, Emma H.; Mosley, Amber L.; Wang, Meijing; Zhong, Xiaoling; Counts, Brittany R.; Rupert, Joseph E.; Young, Andrew R.; Bonetto, Andrea; Horan, Daniel J.; Robling, Alexander G.; Fishel, Melissa L.; Kelley, Mark R.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of Medicine
    More than 85% of patients with pancreatic ductal adenocarcinoma (PDAC) suffer from cachexia, a debilitating syndrome characterized by the loss of muscle and fat and remains an unmet medical need. While chemotherapy remains an effective treatment option, it can also induce weight and muscle loss in patients with cancer. Gemcitabine combined with nab paclitaxel (GnP) is a first line treatment option for patients with PDAC but GnP’s effect on cachexia has not been comprehensively investigated. We interrogated the effects of GnP in a murine model of pancreatic cancer cachexia. Mice were orthotopically implanted with the cachexia inducing pancreatic cell line (KPC) and were administered GnP or vehicle. The controls underwent sham surgery. We defined GnP effects on cachexia and tumor burden by evaluating muscle and cardiac mass and function, fat mass, bone morphometry, and hematology measurements. We completed RNA sequencing and deep proteome profiling in skeletal and cardiac muscle. KPC+GnP reduced tumor burden over 50% and increased survival compared to KPC. KPC vehicle group had more than 15% muscle mass loss and decreased left ventricular mass, this was not present in KPC+GnP when compared to controls. RNA Seq and deep proteomics analyses suggested that muscle and cardiac dysfunction pathways activated in KPC group were either reversed or decreased in KPC+GnP. In all, our data suggests that GnP protects against muscle and cardiac wasting in an experimental model of PDAC cachexia.
  • Loading...
    Thumbnail Image
    Item
    A high-fat diet catalyzes progression to hyperglycemia in mice with selective impairment of insulin action in Glut4-expressing tissues
    (Elsevier, 2022-01) Reilly, Austin M.; Yan, Shijun; Huang, Menghao; Abhyankar, Surabhi D.; Conley, Jason M.; Bone, Robert N.; Stull, Natalie D.; Horan, Daniel J.; Roh, Hyun C.; Robling, Alexander G.; Ericsson, Aaron C.; Dong, Xiaocheng C.; Evans-Molina, Carmella; Ren, Hongxia; Pediatrics, School of Medicine
    Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.
  • Loading...
    Thumbnail Image
    Item
    Induction of Lrp5 HBM-causing mutations in Cathepsin-K expressing cells alters bone metabolism
    (Elsevier, 2019-03) Kang, Kyung Shin; Hong, Jung Min; Horan, Daniel J.; Lim, Kyung-Eun; Bullock, Whitney A.; Bruzzaniti, Angela; Hann, Steven; Warman, Matthew L.; Robling, Alexander G.; Anatomy and Cell Biology, School of Medicine
    High-bone-mass (HBM)-causing missense mutations in the low density lipoprotein receptor-related protein-5 (Lrp5) are associated with increased osteoanabolic action and protection from disuse- and ovariectomy-induced osteopenia. These mutations (e.g., A214V and G171V) confer resistance to endogenous secreted Lrp5/6 inhibitors, such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). Cells in the osteoblast lineage are responsive to canonical Wnt stimulation, but recent work has indicated that osteoclasts exhibit both indirect and direct responsiveness to canonical Wnt. Whether Lrp5-HBM receptors, expressed in osteoclasts, might alter osteoclast differentiation, activity, and consequent net bone balance in the skeleton, is not known. To address this, we bred mice harboring heterozygous Lrp5 HBM-causing conditional knock-in alleles to Ctsk-Cre transgenic mice and studied the phenotype using DXA, μCT, histomorphometry, serum assays, and primary cell culture. Mice with HBM alleles induced in Ctsk-expressing cells (TG) exhibited higher bone mass and architectural properties compared to non-transgenic (NTG) counterparts. In vivo and in vitro measurements of osteoclast activity, population density, and differentiation yielded significant reductions in osteoclast-related parameters in female but not male TG mice. Droplet digital PCR performed on osteocyte enriched cortical bone tubes from TG and NTG mice revealed that ~8–17% of the osteocyte population (depending on sex) underwent recombination of the conditional Lrp5 allele in the presence of Ctsk-Cre. Further, bone formation parameters in the midshaft femur cortex show a small but significant increase in anabolic action on the endocortical but not periosteal surface. These findings suggest that Wnt/Lrp5 signaling in osteoclasts affects osteoclastogenesis and activity in female mice, but also that some of the changes in bone mass in TG mice might be due to Cre expression in the osteocyte population.
  • Loading...
    Thumbnail Image
    Item
    Loss of Nmp4 Enhances Bone Gain from Sclerostin Antibody Administration
    (Elsevier, 2023) Korff, Crystal; Adaway, Michele; Atkinson, Emily G.; Horan, Daniel J.; Klunk, Angela; Suarez Silva, Brandy; Bellido, Teresita; Plotkin, Lilian I.; Robling, Alexander G.; Bidwell, Joseph P.; Medical and Molecular Genetics, School of Medicine
    Severe osteoporosis is often treated with one of three Food and Drug Administration (FDA)-approved osteoanabolics. These drugs act by (1) parathyroid hormone (PTH) receptor stimulation using analogues to PTH (teriparatide) or PTH-related peptide (abaloparatide) or by (2) monoclonal antibody neutralization of sclerostin, an innate Wnt inhibitor (Scl-mAb, romosozumab-aqqg). The efficacies of both strategies wane over time. The transcription factor Nmp4 (Nuclear Matrix Protein 4) is expressed in all tissues yet mice lacking this gene are healthy and exhibit enhanced PTH-induced bone formation. Conditional deletion of Nmp4 in mesenchymal stem progenitor cells (MSPCs) phenocopies the elevated response to PTH in global Nmp4-/- mice. However, targeted deletion in later osteoblast stages does not replicate this response. In this study we queried whether loss of Nmp4 improves Scl-mAb potency. Experimental cohorts included global Nmp4-/- and Nmp4+/+ littermates and three conditional knockout models. Nmp4-floxed (Nmp4fl/fl) mice were crossed with mice harboring one of three Cre-drivers (i) Prx1Cre+ targeting MSPCs, (ii) BglapCre+ (mature osteocalcin-expressing osteoblasts), and (iii) Dmp1Cre+ (osteocytes). Female mice were treated with Scl-mAb or 0.9 % saline vehicle for 4 or 7 weeks from 10 weeks of age. Skeletal response was assessed using micro-computed tomography, dual-energy X-ray absorptiometry, bone histomorphometry, and serum analysis. Global Nmp4-/- mice exhibited enhanced Scl-mAb-induced increases in trabecular bone in the femur and spine and a heightened increase in whole body areal bone mineral density compared to global Nmp4+/+ controls. This improved Scl-mAb potency was primarily driven by enhanced increases in bone formation. Nmp4fl/fl;PrxCre+ mice showed an exaggerated Scl-mAb-induced increase in femoral bone but not in the spine since Prrx1 is not expressed in vertebra. The Nmp4fl/fl;BglapCre+ and Nmp4fl/fl;Dmp1Cre+ mice did not exhibit an improved Scl-mAb response. We conclude that Nmp4 expression in MSPCs interferes with the bone anabolic response to anti-sclerostin therapy.
  • Loading...
    Thumbnail Image
    Item
    Lrp4 Mediates Bone Homeostasis and Mechanotransduction through Interaction with Sclerostin In Vivo
    (Elsevier, 2019-10-25) Bullock, Whitney A.; Hoggatt, April M.; Horan, Daniel J.; Elmendorf, Andrew J.; Sato, Amy Y.; Bellido, Teresita; Loots, Gabriela G.; Pavalko, Fredrick M.; Robling, Alexander G.; Anatomy and Cell Biology, School of Medicine
    Wnt signaling plays a key role in regulating bone remodeling. In vitro studies suggest that sclerostin's inhibitory action on Lrp5 is facilitated by the membrane-associated receptor Lrp4. We generated an Lrp4 R1170W knockin mouse model (Lrp4KI), based on a published mutation in patients with high bone mass (HBM). Lrp4KI mice have an HBM phenotype (assessed radiographically), including increased bone strength and formation. Overexpression of a Sost transgene had osteopenic effects in Lrp4-WT but not Lrp4KI mice. Conversely, sclerostin inhibition had blunted osteoanabolic effects in Lrp4KI mice. In a disuse-induced bone wasting model, Lrp4KI mice exhibit significantly less bone loss than wild-type (WT) mice. In summary, mice harboring the Lrp4-R1170W missense mutation recapitulate the human HBM phenotype, are less sensitive to altered sclerostin levels, and are protected from disuse-induced bone loss. Lrp4 is an attractive target for pharmacological targeting aimed at increasing bone mass and preventing bone loss due to disuse.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University