- Browse by Author
Browsing by Author "Henschel, Robert"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparison of Multi-Sample Variant Calling Methods for Whole Genome Sequencing(Institute of Electrical and Electronics Engineers, 2014-10) Nho, Kwangsik; West, John D.; Li, Huian; Henschel, Robert; Bharthur, Apoorva; Tavares, Michel C.; Saykin, Andrew J.; Department of Medicine, IU School of MedicineRapid advancement of next-generation sequencing (NGS) technologies has facilitated the search for genetic susceptibility factors that influence disease risk in the field of human genetics. In particular whole genome sequencing (WGS) has been used to obtain the most comprehensive genetic variation of an individual and perform detailed evaluation of all genetic variation. To this end, sophisticated methods to accurately call high-quality variants and genotypes simultaneously on a cohort of individuals from raw sequence data are required. On chromosome 22 of 818 WGS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which is the largest WGS related to a single disease, we compared two multi-sample variant calling methods for the detection of single nucleotide variants (SNVs) and short insertions and deletions (indels) in WGS: (1) reduce the analysis-ready reads (BAM) file to a manageable size by keeping only essential information for variant calling ("REDUCE") and (2) call variants individually on each sample and then perform a joint genotyping analysis of the variant files produced for all samples in a cohort ("JOINT"). JOINT identified 515,210 SNVs and 60,042 indels, while REDUCE identified 358,303 SNVs and 52,855 indels. JOINT identified many more SNVs and indels compared to REDUCE. Both methods had concordance rate of 99.60% for SNVs and 99.06% for indels. For SNVs, evaluation with HumanOmni 2.5M genotyping arrays revealed a concordance rate of 99.68% for JOINT and 99.50% for REDUCE. REDUCE needed more computational time and memory compared to JOINT. Our findings indicate that the multi-sample variant calling method using the JOINT process is a promising strategy for the variant detection, which should facilitate our understanding of the underlying pathogenesis of human diseases.Item The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services(Springer Nature, 2019-05-23) Avesani, Paolo; McPherson, Brent; Hayashi, Soichi; Caiafa, Cesar F.; Henschel, Robert; Garyfallidis, Eleftherios; Kitchell, Lindsey; Bullock, Daniel; Patterson, Andrew; Olivetti, Emanuele; Sporns, Olaf; Saykin, Andrew J.; Wang, Lei; Dinov, Ivo; Hancock, David; Caron, Bradley; Qian, Yiming; Pestilli, Franco; Radiology and Imaging Sciences, School of MedicineWe describe the Open Diffusion Data Derivatives (O3D) repository: an integrated collection of preserved brain data derivatives and processing pipelines, published together using a single digital-object-identifier. The data derivatives were generated using modern diffusion-weighted magnetic resonance imaging data (dMRI) with diverse properties of resolution and signal-to-noise ratio. In addition to the data, we publish all processing pipelines (also referred to as open cloud services). The pipelines utilize modern methods for neuroimaging data processing (diffusion-signal modelling, fiber tracking, tractography evaluation, white matter segmentation, and structural connectome construction). The O3D open services can allow cognitive and clinical neuroscientists to run the connectome mapping algorithms on new, user-uploaded, data. Open source code implementing all O3D services is also provided to allow computational and computer scientists to reuse and extend the processing methods. Publishing both data-derivatives and integrated processing pipeline promotes practices for scientific reproducibility and data upcycling by providing open access to the research assets for utilization by multiple scientific communities.