ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "He, Chuan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells
    (SpringerNature, 2017-04-25) Pan, Feng; Wingo, Thomas S.; Zhao, Zhigang; Gao, Rui; Makishima, Hideki; Qu, Guangbo; lin, Li; Yu, Miao; Ortega, Janice R.; Wang, Jiapeng; Nazha, Aziz; Chen, Li; Yao, Bing; Liu, Can; Chen, Shi; Weeks, Ophelia; Ni, Hongyu; Phillips, Brittany Lynn; Huang, Suming; Wang, Jianlong; He, Chuan; Li, Guo-Min; Radivoyevitch, Tomas; Aifantis, Iannis; Maciejewski, Jaroslaw P.; Yang, Feng-Chun; Jin, Peng; Xu, Mingjiang; Department of Pediatrics, School of Medicine
    TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although TET2 mutations frequently occur in various types of haematological malignancies, the mechanism by which they increase risk for these cancers remains poorly understood. Here we show that Tet2-/- mice develop spontaneous myeloid, T- and B-cell malignancies after long latencies. Exome sequencing of Tet2-/- tumours reveals accumulation of numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of wild-type and premalignant Tet2-/- Lin-c-Kit+ cells shows higher mutation frequencies in Tet2-/- cells. We further show that the increased mutational burden is particularly high at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds. Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of haematological malignancy pathogenesis.
  • Loading...
    Thumbnail Image
    Item
    The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus
    (Wiley, 2012) Jeong, Do-Won; Cho, Hoonsik; Jones, Marcus B.; Shatzkes, Kenneth; Sun, Fei; Ji, Quanjiang; Liu, Qian; Peterson, Scott N.; He, Chuan; Bae, Taeok; Microbiology and Immunology, School of Medicine
    In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase's phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-haemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University