- Browse by Author
Browsing by Author "Han, Qi"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury(Wolters Kluwer, 2025) Qu, Wenrui; Wu, Xiangbing; Wu, Wei; Wang, Ying; Sun, Yan; Deng, Lingxiao; Walker, Melissa; Chen, Chen; Dai, Heqiao; Han, Qi; Ding, Ying; Xia, Yongzhi; Smith, George; Li, Rui; Liu, Nai-Kui; Xu, Xiao-Ming; Neurological Surgery, School of MedicineSchwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.Item Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice(Elsevier, 2022-05) Mah, Kar Men; Wu, Wei; Al-Ali, Hassan; Sun, Yan; Han, Qi; Ding, Ying; Muñoz, Melissa; Xu, Xiao-Ming; Lemmon, Vance P.; Bixby, John L.; Neurological Surgery, School of MedicineRecovery from spinal cord injury (SCI) and other central nervous system (CNS) trauma is hampered by limits on axonal regeneration in the CNS. Regeneration is restricted by the lack of neuron-intrinsic regenerative capacity and by the repressive microenvironment confronting damaged axons. To address this challenge, we have developed a therapeutic strategy that co-targets kinases involved in both extrinsic and intrinsic regulatory pathways. Prior work identified a kinase inhibitor (RO48) with advantageous polypharmacology (co-inhibition of targets including ROCK2 and S6K1), which promoted CNS axon growth in vitro and corticospinal tract (CST) sprouting in a mouse pyramidotomy model. We now show that RO48 promotes neurite growth from sensory neurons and a variety of CNS neurons in vitro, and promotes CST sprouting and/or regeneration in multiple mouse models of spinal cord injury. Notably, these in vivo effects of RO48 were seen in several independent experimental series performed in distinct laboratories at different times. Finally, in a cervical dorsal hemisection model, RO48 not only promoted growth of CST axons beyond the lesion, but also improved behavioral recovery in the rotarod, gridwalk, and pellet retrieval tasks. Our results provide strong evidence for RO48 as an effective compound to promote axon growth and regeneration. Further, they point to strategies for increasing robustness of interventions in pre-clinical models.Item Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice(Nature Research, 2019-12-20) Han, Qi; Ordaz, Josue D.; Liu, Nai-Kui; Richardson, Zoe; Wu, Wei; Xia, Yongzhi; Qu, Wenrui; Wang, Ying; Dai, Heqiao; Zhang, Yi Ping; Shields, Christopher B.; Smith, George M.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineLocomotor function, mediated by lumbar neural circuitry, is modulated by descending spinal pathways. Spinal cord injury (SCI) interrupts descending projections and denervates lumbar motor neurons (MNs). We previously reported that retrogradely transported neurotrophin-3 (NT-3) to lumbar MNs attenuated SCI-induced lumbar MN dendritic atrophy and enabled functional recovery after a rostral thoracic contusion. Here we functionally dissected the role of descending neural pathways in response to NT-3-mediated recovery after a T9 contusive SCI in mice. We find that residual projections to lumbar MNs are required to produce leg movements after SCI. Next, we show that the spared descending propriospinal pathway, rather than other pathways (including the corticospinal, rubrospinal, serotonergic, and dopaminergic pathways), accounts for NT-3-enhanced recovery. Lastly, we show that NT-3 induced propriospino-MN circuit reorganization after the T9 contusion via promotion of dendritic regrowth rather than prevention of dendritic atrophy.Item Mitochondrial integrity in neuronal injury and repair(Wolters Kluwer, 2021-04) Han, Qi; Xu, Xiao-Ming; Neurological Surgery, School of MedicineItem Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment(Elsevier, 2019-08) Sun, Guodong; Yang, Shuxian; Cai, Huaihong; Shu, Yijin; Han, Qi; Wang, Baocheng; Li, Zhizhong; Zhou, Libing; Gao, Qingsheng; Yin, Zhinan; Neurological Surgery, School of MedicineSpinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS2) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS2@PEG (MoS2 = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS2@PEG in vitro and demonstrate that ET-loading MoS2@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS2@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS2@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS2@PEG and promising utility of MoS2 nanomaterial-mediated drug delivery.Item Neurotrophin-3-mediated locomotor recovery: a novel therapeutic strategy targeting lumbar neural circuitry after spinal cord injury(Wolters Kluwer, 2020-12) Han, Qi; Xu, Xiao-Ming; Neurological Surgery, School of MedicineItem Profiling analysis of long non-coding RNAs in early postnatal mouse hearts(SpringerNature, 2017-03-07) Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui; Department of Pediatrics, IU School of MedicineMammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition.Item Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury(Mary Ann Liebert, 2018-03-15) Sengelaub, Dale R.; Han, Qi; Liu, Nai-Kui; Maczuga, Melissa A.; Szalavari, Violetta; Valencia, Stephanie A.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineSpinal cord injury (SCI) results in lesions that destroy tissue and disrupt spinal tracts, producing deficits in locomotor and autonomic function. We previously demonstrated that motoneurons and the muscles they innervate show pronounced atrophy after SCI, and these changes are prevented by treatment with testosterone. Here, we assessed whether the testosterone active metabolites estradiol and dihydrotestosterone have similar protective effects after SCI. Young adult female rats received either sham or T9 spinal cord contusion injuries and were treated with estradiol, dihydrotestosterone, both, or nothing via Silastic capsules. Basso-Beattie-Bresnahan locomotor testing was performed weekly and voiding behavior was assessed at 3 weeks post-injury. Four weeks after SCI, lesion volume and tissue sparing, quadriceps muscle fiber cross-sectional area, and motoneuron dendritic morphology were assessed. Spontaneous locomotor behavior improved after SCI, but hormone treatments had no effect. Voiding behavior was disrupted after SCI, but was significantly improved by treatment with either estradiol or dihydrotestosterone; combined treatment was maximally effective. Treatment with estradiol reduced lesion volume, but dihydrotestosterone alone and estradiol combined with dihydrotestosterone were ineffective. SCI-induced decreases in motoneuron dendritic length were attenuated by all hormone treatments. SCI-induced reductions in muscle fiber cross-sectional areas were prevented by treatment with either dihydrotestosterone or estradiol combined with dihydrotestosterone, but estradiol treatment was ineffective. These findings suggest that deficits in micturition and regressive changes in motoneuron and muscle morphology seen after SCI are ameliorated by treatment with estradiol or dihydrotestosterone, further supporting a role for steroid hormones as neurotherapeutic agents in the injured nervous system.Item Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia(Cell Press, 2021) Huang, Ning; Li, Sunan; Xie, Yuxiang; Han, Qi; Xu, Xiao-Ming; Sheng, Zu-Hang; Neurological Surgery, School of MedicineMitochondria supply adenosine triphosphate (ATP) essential for neuronal survival and regeneration. Brain injury and ischemia trigger acute mitochondrial damage and a local energy crisis, leading to degeneration. Boosting local ATP supply in injured axons is thus critical to meet increased energy demand during nerve repair and regeneration in adult brains, where mitochondria remain largely stationary. Here, we elucidate an intrinsic energetic repair signaling axis that boosts axonal energy supply by reprogramming mitochondrial trafficking and anchoring in response to acute injury-ischemic stress in mature neurons and adult brains. P21-activated kinase 5 (PAK5) is a brain mitochondrial kinase with declined expression in mature neurons. PAK5 synthesis and signaling is spatiotemporally activated within axons in response to ischemic stress and axonal injury. PAK5 signaling remobilizes and replaces damaged mitochondria via the phosphorylation switch that turns off the axonal mitochondrial anchor syntaphilin. Injury-ischemic insults trigger AKT growth signaling that activates PAK5 and boosts local energy supply, thus protecting axon survival and facilitating regeneration in in vitro and in vivo models. Our study reveals an axonal mitochondrial signaling axis that responds to injury and ischemia by remobilizing damaged mitochondria for replacement, thereby maintaining local energy supply to support central nervous system (CNS) survival and regeneration.Item Restoring cellular energetics promotes axon regeneration and functional recovery after spinal cord injury(Cell Press, 2020-03-03) Han, Qi; Xie, Yuxiang; Ordaz, Josue D.; Huh, Andrew J.; Huang, Ning; Wu, Wei; Liu, Naikui; Chamberlain, Kelly A.; Sheng, Zu-Hang; Xu, Xiao-Ming; Neurological Surgery, School of MedicineAxonal regeneration in the central nervous system (CNS) is a highly energy-demanding process. Extrinsic insults and intrinsic restrictions lead to an energy crisis in injured axons, raising the question of whether recovering energy deficits facilitates regeneration. Here, we reveal that enhancing axonal mitochondrial transport by deleting syntaphilin (Snph) recovers injury-induced mitochondrial depolarization. Using three CNS injury mouse models, we demonstrate that Snph-/- mice display enhanced corticospinal tract (CST) regeneration passing through a spinal cord lesion, accelerated regrowth of monoaminergic axons across a transection gap, and increased compensatory sprouting of uninjured CST. Notably, regenerated CST axons form functional synapses and promote motor functional recovery. Administration of the bioenergetic compound creatine boosts CST regenerative capacity in Snph-/- mice. Our study provides mechanistic insights into intrinsic regeneration failure in CNS and suggests that enhancing mitochondrial transport and cellular energetics are promising strategies to promote regeneration and functional restoration after CNS injuries.