- Browse by Author
Browsing by Author "Guo, Lei"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach(Elsevier, 2020-04) Du, Lei; Liu, Kefei; Yao, Xiaohui; Risacher, Shannon L.; Han, Junwei; Saykin, Andrew J.; Guo, Lei; Shen, Li; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics becomes an important research topic since it can reveal complex associations between genetic factors and the structures or functions of the human brain. Sparse canonical correlation analysis (SCCA) is a popular bi-multivariate association identification method. To mine the complex genetic basis of brain imaging phenotypes, there arise many SCCA methods with a variety of norms for incorporating different structures of interest. They often use the group lasso penalty, the fused lasso or the graph/network guided fused lasso ones. However, the group lasso methods have limited capability because of the incomplete or unavailable prior knowledge in real applications. The fused lasso and graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. In this paper, we introduce two new penalties to improve the fused lasso and the graph/network guided lasso penalties in structured sparse learning. We impose both penalties to the SCCA model and propose an optimization algorithm to solve it. The proposed SCCA method has a strong upper bound of grouping effects for both positively and negatively highly correlated variables. We show that, on both synthetic and real neuroimaging genetics data, the proposed SCCA method performs better than or equally to the conventional methods using fused lasso or graph/network guided fused lasso. In particular, the proposed method identifies higher canonical correlation coefficients and captures clearer canonical weight patterns, demonstrating its promising capability in revealing biologically meaningful imaging genetic associations.Item Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics(IEEE Xplore, 2019-01-24) Du, Lei; Liu, Kefei; Yao, Xiaohui; Risacher, Shannon L.; Han, Junwei; Guo, Lei; Saykin, Andrew J.; Shen, Li; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics studies the genetic basis of brain structures and functions via integrating both genotypic data such as single nucleotide polymorphism (SNP) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise univariate analyses. MTL methods generally incorporate a few of QTs and are not designed for feature selection from a large number of QTs; while existing SCCA methods typically employ only one modality of QTs to study its association with SNPs. Both MTL and SCCA encounter computational challenges as the number of SNPs increases. In this paper, combining the merits of MTL and SCCA, we propose a novel multi-task SCCA (MTSCCA) learning framework to identify bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by different imaging modalities. Using the G2,1-norm regularization, MTSCCA treats all SNPs in the same group together to enforce sparsity at the group level. The l2,1-norm penalty is used to jointly select features across multiple tasks for SNPs, and across multiple modalities for QTs. A fast optimization algorithm is proposed using the grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains improved performance regarding both correlation coefficients and canonical weights patterns. In addition, our method runs very fast and is easy-to-implement, and thus could provide a powerful tool for genome-wide brain-wide imaging genetic studies.Item Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via A Novel Structured SCCA Approach(Springer, 2017-06) Du, Lei; Zhang, Tuo; Liu, Kefei; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L.; Saykin, Andrew J.; Han, Junwei; Guo, Lei; Shen, Li; Alzheimer's Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.Item Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification(Oxford, 2020-07-13) Du, Lei; Liu, Fang; Liu, Kefei; Yao, Xiaohui; Risacher, Shannon L; Han, Junwei; Guo, Lei; Saykin, Andrew J; Shen, Li; Radiology and Imaging Sciences, School of MedicineMotivation Brain imaging genetics studies the complex associations between genotypic data such as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). The neurodegenerative disorders usually exhibit the diversity and heterogeneity, originating from which different diagnostic groups might carry distinct imaging QTs, SNPs and their interactions. Sparse canonical correlation analysis (SCCA) is widely used to identify bi-multivariate genotype–phenotype associations. However, most existing SCCA methods are unsupervised, leading to an inability to identify diagnosis-specific genotype–phenotype associations. Results In this article, we propose a new joint multitask learning method, named MT–SCCALR, which absorbs the merits of both SCCA and logistic regression. MT–SCCALR learns genotype–phenotype associations of multiple tasks jointly, with each task focusing on identifying one diagnosis-specific genotype–phenotype pattern. Meanwhile, MT–SCCALR cannot only select relevant SNPs and imaging QTs for each diagnostic group alone, but also allows the selection of those shared by multiple diagnostic groups. We derive an efficient optimization algorithm whose convergence to a local optimum is guaranteed. Compared with two state-of-the-art methods, MT–SCCALR yields better or similar canonical correlation coefficients and classification performances. In addition, it owns much better discriminative canonical weight patterns of great interest than competitors. This demonstrates the power and capability of MTSCCAR in identifying diagnostically heterogeneous genotype–phenotype patterns, which would be helpful to understand the pathophysiology of brain disorders.Item Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort(Oxford University Press, 2019-07) Du, Lei; Liu, Kefei; Zhu, Lei; Yao, Xiaohui; Risacher, Shannon L.; Guo, Lei; Saykin, Andrew J.; Shen, Li; Radiology & Imaging Sciences, IU School of MedicineMotivation Identifying the genetic basis of the brain structure, function and disorder by using the imaging quantitative traits (QTs) as endophenotypes is an important task in brain science. Brain QTs often change over time while the disorder progresses and thus understanding how the genetic factors play roles on the progressive brain QT changes is of great importance and meaning. Most existing imaging genetics methods only analyze the baseline neuroimaging data, and thus those longitudinal imaging data across multiple time points containing important disease progression information are omitted. Results We propose a novel temporal imaging genetic model which performs the multi-task sparse canonical correlation analysis (T-MTSCCA). Our model uses longitudinal neuroimaging data to uncover that how single nucleotide polymorphisms (SNPs) play roles on affecting brain QTs over the time. Incorporating the relationship of the longitudinal imaging data and that within SNPs, T-MTSCCA could identify a trajectory of progressive imaging genetic patterns over the time. We propose an efficient algorithm to solve the problem and show its convergence. We evaluate T-MTSCCA on 408 subjects from the Alzheimer’s Disease Neuroimaging Initiative database with longitudinal magnetic resonance imaging data and genetic data available. The experimental results show that T-MTSCCA performs either better than or equally to the state-of-the-art methods. In particular, T-MTSCCA could identify higher canonical correlation coefficients and capture clearer canonical weight patterns. This suggests that T-MTSCCA identifies time-consistent and time-dependent SNPs and imaging QTs, which further help understand the genetic basis of the brain QT changes over the time during the disease progression. Availability and implementation The software and simulation data are publicly available at https://github.com/dulei323/TMTSCCA. Supplementary information Supplementary data are available at Bioinformatics online.Item Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics(Institute of Electrical and Electronics Engineers, 2021) Du, Lei; Liu, Kefei; Yao, Xiaohui; Risacher, Shannon L.; Han, Junwei; Saykin, Andrew J.; Guo, Lei; Shen, Li; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics studies the genetic basis of brain structures and functionalities via integrating genotypic data such as single nucleotide polymorphisms (SNPs) and imaging quantitative traits (QTs). In this area, both multi-task learning (MTL) and sparse canonical correlation analysis (SCCA) methods are widely used since they are superior to those independent and pairwise univariate analysis. MTL methods generally incorporate a few of QTs and could not select features from multiple QTs; while SCCA methods typically employ one modality of QTs to study its association with SNPs. Both MTL and SCCA are computational expensive as the number of SNPs increases. In this paper, we propose a novel multi-task SCCA (MTSCCA) method to identify bi-multivariate associations between SNPs and multi-modal imaging QTs. MTSCCA could make use of the complementary information carried by different imaging modalities. MTSCCA enforces sparsity at the group level via the G2,1-norm, and jointly selects features across multiple tasks for SNPs and QTs via the ℓ2,1-norm. A fast optimization algorithm is proposed using the grouping information of SNPs. Compared with conventional SCCA methods, MTSCCA obtains better correlation coefficients and canonical weights patterns. In addition, MTSCCA runs very fast and easy-to-implement, indicating its potential power in genome-wide brain-wide imaging genetics.Item A Novel SCCA Approach via Truncated ℓ1-norm and Truncated Group Lasso for Brain Imaging Genetics(Oxford University Press, 2017-09-18) Du, Lei; Liu, Kefei; Zhang, Tuo; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Han, Junwei; Guo, Lei; Saykin, Andrew J.; Shen, Li; Radiology and Imaging Sciences, School of MedicineMotivation: Brain imaging genetics, which studies the linkage between genetic variations and structural or functional measures of the human brain, has become increasingly important in recent years. Discovering the bi-multivariate relationship between genetic markers such as single-nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is one major task in imaging genetics. Sparse Canonical Correlation Analysis (SCCA) has been a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ 1 -norm or its variants to induce sparsity. The ℓ 0 -norm penalty is a perfect sparsity-inducing tool which, however, is an NP-hard problem. Results: In this paper, we propose the truncated ℓ 1 -norm penalized SCCA to improve the performance and effectiveness of the ℓ 1 -norm based SCCA methods. Besides, we propose an efficient optimization algorithms to solve this novel SCCA problem. The proposed method is an adaptive shrinkage method via tuning τ . It can avoid the time intensive parameter tuning if given a reasonable small τ . Furthermore, we extend it to the truncated group-lasso (TGL), and propose TGL-SCCA model to improve the group-lasso-based SCCA methods. The experimental results, compared with four benchmark methods, show that our SCCA methods identify better or similar correlation coefficients, and better canonical loading profiles than the competing methods. This demonstrates the effectiveness and efficiency of our methods in discovering interesting imaging genetic associations. Availability: The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/tlpscca/ .Item Sparse Canonical Correlation Analysis via Truncated ℓ1-norm with Application to Brain Imaging Genetics(IEEE, 2016-12) Du, Lei; Zhang, Tuo; Liu, Kefei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Guo, Lei; Saykin, Andrew J.; Shen, Li; Medical and Molecular Genetics, School of MedicineDiscovering bi-multivariate associations between genetic markers and neuroimaging quantitative traits is a major task in brain imaging genetics. Sparse Canonical Correlation Analysis (SCCA) is a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ1-norm or its variants. The ℓ0-norm is more desirable, which however remains unexplored since the ℓ0-norm minimization is NP-hard. In this paper, we impose the truncated ℓ1-norm to improve the performance of the ℓ1-norm based SCCA methods. Besides, we propose two efficient optimization algorithms and prove their convergence. The experimental results, compared with two benchmark methods, show that our method identifies better and meaningful canonical loading patterns in both simulated and real imaging genetic analyse.