- Browse by Author
Browsing by Author "Griesenauer, Brad"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition(American Society for Clinical Investigation, 2017-06-15) Forcade, Edouard; Paz, Katelyn; Flynn, Ryan; Griesenauer, Brad; Amet, Tohti; Li, Wei; Liu, Liangyi; Bakoyannis, Giorgos; Jiang, Di; Chu, Hong Wei; Lobera, Mercedes; Yang, Jianfei; Wilkes, David S.; Du, Jing; Gartlan, Kate; Hill, Geoffrey R.; MacDonald, Kelli P.A.; Espada, Eduardo L.; Blanco, Patrick; Serody, Jonathan S.; Koreth, John; Cutler, Corey S.; Antin, Joseph H.; Soiffer, Robert J.; Ritz, Jerome; Paczesny, Sophie; Blazar, Bruce R.; Pediatrics, School of MedicineChronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.Item Determination of an Interaction Network between an Extracellular Bacterial Pathogen and the Human Host(American Society for Microbiology, 2019-06-18) Griesenauer, Brad; Tran, Tuan M.; Fortney, Kate R.; Janowicz, Diane M.; Johnson, Paula; Gao, Hongyu; Barnes, Stephen; Wilson, Landon S.; Liu, Yunlong; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineA major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivo H. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response.IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi Our results suggest that H. ducreyi survives in an abscess by utilizing l-ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection.Item Ex vivo culture of mouse skin activates an interleukin 1 alpha-dependent inflammatory response(Wiley, 2020-01) Zhou, Hong-Ming; Slominski, Radomir M.; Seymour, Leroy J.; Bell, Maria C.; Dave, Priya; Atumonye, Joseph; Wright, William, III.; Dawes, Avery; Griesenauer, Brad; Paczesny, Sophie; Kaplan, Mark H.; Spandau, Dan F.; Turner, Matthew J.; Dermatology, School of MedicineEx vivo culture of mouse and human skin causes an inflammatory response characterized by production of multiple cytokines. We used ex vivo culture of mouse tail skin specimens to investigate mechanisms of this skin culture-induced inflammatory response. Multiplex assays revealed production of interleukin 1 alpha (IL-1α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), chemokine C-X-C motif ligand 1 (CXCL1), granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) during skin culture, and quantitative PCR revealed transcripts for these proteins were also increased. Ex vivo cultures of skin from myeloid differentiation primary response 88 deficient mice (Myd88-/- ) demonstrated significantly reduced expression of transcripts for the aforementioned cytokines. The same result was observed with skin from interleukin 1 receptor type 1 deficient mice (Il1r1-/- ). These data suggested the IL-1R1/MyD88 axis is required for the skin culture-induced inflammatory response and led us to investigate the role of IL-1α and IL-1β (the ligands for IL-1R1) in this process. Addition of IL-1α neutralizing antibody to skin cultures significantly reduced expression of Cxcl1, Il6 and Csf3. IL-1β neutralization did not reduce levels of these transcripts. These studies suggest that IL-1α promotes the skin the culture-induced inflammatory response.Item From proteomics to discovery of first-in-class ST2 inhibitors active in vivo(American Society for Clinical Investigation, 2018-07-26) Ramadan, Abdulraouf M.; Daguindau, Etienne; Rech, Jason C.; Chinnaswamy, Krishnapriya; Zhang, Jilu; Hura, Greg L.; Griesenauer, Brad; Bolten, Zachary; Robida, Aaron; Larsen, Martha; Stuckey, Jeanne A.; Yang, Chao-Yie; Paczesny, Sophie; Pediatrics, School of MedicineSoluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2.Item Granzyme A–producing T helper cells are critical for acute graft-versus-host disease(American Society for Clinical Investigation, 2020-08-18) Park, Sungtae; Griesenauer, Brad; Jiang, Hua; Adom, Djamilatou; Mehrpouya-Bahrami, Pegah; Chakravorty, Srishti; Kazemian, Majid; Imam, Tanbeena; Srivastava, Rajneesh; Hayes, Tristan A.; Pardo, Julian; Janga, Sarath Chandra; Paczesny, Sophie; Kaplan, Mark H.; Olson, Matthew R.; Microbiology and Immunology, School of MedicineAcute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD.Item The IL-33 Receptor/ST2 acts as a positive regulator of functional mouse bone marrow hematopoietic stem and progenitor cells(Elsevier, 2020-09) Capitano, Maegan L.; Griesenauer, Brad; Guo, Bin; Cooper, Scott; Paczesny, Sophie; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineThere is a paucity of information on a potential role for the IL-33 receptor/ST2 in the regulation of mouse bone marrow (BM) hematopoietic stem (HSC) and progenitor (HPC) cells. Comparing the BM of st2-/- and wild type (WT) control mice using functional assays, it was found that st2-/- BM cells had poorer engrafting capacity than WT BM in a competitive repopulating assay using congenic mice, with no changes in reconstitution of B-, T- and myeloid cells following transplantation. The BM of st2-/- mice also had fewer granulocyte-macrophage, erythroid, and multipotential progenitors than that of WT BM and these st2-/- HPC were in a slow cycling state compared to that of the rapidly cycling HPC of the WT mice. While functional assessment of HSC and HPC demonstrated that ST2 has a positive influence on regulation of HSC, we could not pick up differences in st2-/- compared to WT BM using only phenotypic analysis of HSC and HPC populations prior to transplantation, again demonstrating that phenotypic analysis of HSC and HPC do not always recapitulate the functional assessments of these immature hematopoietic cells.Item Interactions of the Skin Pathogen Haemophilus ducreyi With the Human Host(Frontiers Media, 2021-02-03) Brothwell, Julie A.; Griesenauer, Brad; Chen, Li; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineThe obligate human pathogen Haemophilus ducreyi causes both cutaneous ulcers in children and sexually transmitted genital ulcers (chancroid) in adults. Pathogenesis is dependent on avoiding phagocytosis and exploiting the suppurative granuloma-like niche, which contains a myriad of innate immune cells and memory T cells. Despite this immune infiltrate, long-lived immune protection does not develop against repeated H. ducreyi infections—even with the same strain. Most of what we know about infectious skin diseases comes from naturally occurring infections and/or animal models; however, for H. ducreyi, this information comes from an experimental model of infection in human volunteers that was developed nearly three decades ago. The model mirrors the progression of natural disease and serves as a valuable tool to determine the composition of the immune cell infiltrate early in disease and to identify host and bacterial factors that are required for the establishment of infection and disease progression. Most recently, holistic investigation of the experimentally infected skin microenvironment using multiple “omics” techniques has revealed that non-canonical bacterial virulence factors, such as genes involved in central metabolism, may be relevant to disease progression. Thus, the immune system not only defends the host against H. ducreyi, but also dictates the nutrient availability for the invading bacteria, which must adapt their gene expression to exploit the inflammatory metabolic niche. These findings have broadened our view of the host-pathogen interaction network from considering only classical, effector-based virulence paradigms to include adaptations to the metabolic environment. How both host and bacterial factors interact to determine infection outcome is a current focus in the field. Here, we review what we have learned from experimental H. ducreyi infection about host-pathogen interactions, make comparisons to what is known for other skin pathogens, and discuss how novel technologies will deepen our understanding of this infection.Item Less cholesterol means better tumor killing for cytotoxic T9 cells(Rockefeller University Press, 2018-06-04) Griesenauer, Brad; Paczesny, Sophie; Pediatrics, School of MedicineIn this issue, Ma et al. (https://doi.org/10.1084/jem.20171576) show that removal of cholesterol from CD8 T cells during type 9 differentiation increases their IL-9 production, persistence in vivo, and cytolytic function against tumors by preventing SUMOylation of liver X receptors.Item Rorc restrains the potency of ST2+ regulatory T cells in ameliorating intestinal graft-versus-host disease(American Society for Clinical Investigation, 2019-03-07) Yang, Jinfeng; Ramadan, Abdulraouf; Reichenbach, Dawn K.; Loschi, Michael; Zhang, Jilu; Griesenauer, Brad; Liu, Hong; Hippen, Keli L.; Blazar, Bruce R.; Paczesny, Sophie; Pediatrics, School of MedicineSoluble stimulation-2 (ST2) is increased during graft-versus-host disease (GVHD), while Tregs that express ST2 prevent GVHD through unknown mechanisms. Transplantation of Foxp3- T cells and Tregs that were collected and sorted from different Foxp3 reporter mice indicated that in mice that developed GVHD, ST2+ Tregs were thymus derived and predominantly localized to the intestine. ST2-/- Treg transplantation was associated with reduced total intestinal Treg frequency and activation. ST2-/- versus WT intestinal Treg transcriptomes showed decreased Treg functional markers and, reciprocally, increased Rorc expression. Rorc-/- T cells transplantation enhanced the frequency and function of intestinal ST2+ Tregs and reduced GVHD through decreased gut-infiltrating soluble ST2-producing type 1 and increased IL-4/IL-10-producing type 2 T cells. Cotransfer of ST2+ Tregs sorted from Rorc-/- mice with WT CD25-depleted T cells decreased GVHD severity and mortality, increased intestinal ST2+KLRG1+ Tregs, and decreased type 1 T cells after transplantation, indicating an intrinsic mechanism. Ex vivo IL-33-stimulated Tregs (TregIL-33) expressed higher amphiregulin and displayed better immunosuppression, and adoptive transfer prevented GVHD better than control Tregs or TregIL-33 cultured with IL-23/IL-17. Amphiregulin blockade by neutralizing antibody in vivo abolished the protective effect of TregIL-33. Our data show that inverse expression of ST2 and RORγt in intestinal Tregs determines GVHD and that TregIL-33 has potential as a cellular therapy avenue for preventing GVHD.Item ST2/MyD88 deficiency protects mice against aGVHD and spares T-regulatory cells(American Association of Immunologists, 2020-04-12) Griesenauer, Brad; Jiang, Hua; Yang, Jinfeng; Zhang, Jilu; Ramadan, Abdulraouf M.; Egbosiuba, Jane; Campa, Khaled; Paczesny, Sophie; Medicine, School of MedicineAcute graft-versus-host disease (aGVHD) hinders the efficacy of allogeneic hematopoietic cell transplantation (HCT). Plasma levels of soluble membrane-bound ST2 (ST2) are elevated in human and murine aGVHD and correlated to type 1 T cells response. ST2 signals through the adapter protein MyD88. The role of MyD88 in T cells during aGVHD has yet to be elucidated. We found that knocking out MyD88 in the donor T cells protected against aGVHD independent of IL-1R and TLR4 signaling in two murine HCT models. This protection was entirely driven by MyD88-/- CD4 T cells. Transplanting donor MyD88-/- conventional T cells (Tcons) with wild-type (WT) or MyD88-/- regulatory T cells (Tregs) lowered aGVHD severity and mortality. Transcriptome analysis of sorted MyD88-/- CD4 T cells from the intestine 10 d post-HCT showed lower levels of Il1rl1 (gene of ST2), Ifng, Csf2, Stat5, Batf, and Jak2 Transplanting donor ST2-/- Tcons with WT or ST2-/- Tregs showed a similar phenotype with what we observed when using donor MyD88-/- Tcons. Decreased ST2 was confirmed at the protein level with less secretion of soluble ST2 and more expression of ST2 compared with WT T cells. Our data suggest that Treg suppression from lack of MyD88 signaling in donor Tcons during alloreactivity uses the ST2 but not the IL-1R or TLR4 pathways, and ST2 represents a potential aGVHD therapeutic target sparing Tregs.