- Browse by Author
Browsing by Author "Graly, Joseph A."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Chemical weathering signatures at Mt. Achernar, Central Transantarctic Mountains II: Surface exposed sediments(Elsevier, 2022-10-01) Graly, Joseph A.; Licht, Kathy J.; Bader, Nicole A.; Kassab, Christine M.; Bish, David L.; Kaplan, Michael R.; Earth and Environmental Sciences, School of ScienceMt Achernar Moraine is a high altitude, high latitude blue ice moraine where typical conditions preclude the presence of liquid water. Cosmogenic and salt accumulation dating indicate that the moraine’s surface is progressively older away from the active ice margin, with surface exposure ages up to 1 Ma. We analyze the chemical and mineralogical transformations in the <63 µm fraction along transects across the moraine. Data include bulk chemical composition, crystalline mineralogy by X-ray diffraction (XRD), and the composition of amorphous or low abundance products of chemical weathering by sequential extraction. These data are analyzed by multiple regression as a function of exposure age and as a function of composition of the moraine’s cobble and pebble-sized clasts. Change with exposure age is defined by the development of salts and carbonate minerals along with the input of detrital material, principally from sedimentary rocks. Clay minerals and amorphous cements breakdown as detrital material in proportions far above their abundance in the rock clasts, whereas framework silicates (i.e. feldspars and quartz) break down in relatively small proportions. Both the carbonate minerals and some of the salts form from atmospheric acids (i.e. H2CO3) that in turn react with other minerals. Mass balance shows that the input of these atmospheric acids balances with gains in authigenic smectites, zeolites, and amorphous material. Many of these minerals also form in the subglacial environment, but are poorly represented in the underlying rock, suggesting a similar chemical weathering regime in both the subglacial and surface environments of this hyper cold and arid setting. The rate of CO2 drawdown into carbonate minerals increases as the moraine progressively thickens, from 3 mg·m2·a−1 in freshly emerging sediments to ∼50 mg·m2·a−1 after 500 ka of exposure. Weathering from acidic aerosols is proportional to atmospheric flux documented in ice cores and does not vary with moraine thickness. The carbonate mineral formation rates are more than an order of magnitude below those of the subglacial environment and as much as two orders of magnitude below those found in warm desert soils. Nevertheless, the drawdown of atmospheric CO2 into carbonate minerals occurs in a terrestrial setting where water exists only in vapor form.Item Chemical weathering signatures from Mt. Achernar Moraine, Central Transantarctic Mountains I: Subglacial sediments compared with underlying rock(Elsevier, 2020-08) Graly, Joseph A.; Licht, Kathy J.; Bader, Nicole A.; Bish, David L.; Earth Sciences, School of ScienceIn order to determine chemical weathering rates on the subglacial land surface of Antarctica, we compare the composition and mineralogy of freshly emerging fine sediments to that of the underlying bedrock, as represented by glacially derived cobble-sized clasts. Samples were collected from Mt. Achernar Moraine, a large blue ice moraine, where subglacial material naturally emerges through sublimation of the surrounding ice. Both rocks and sediments were analyzed for total elemental composition, mineral abundance by X-ray diffraction, and by sequential extractions targeting chemical weathering products. The fine sediment fraction is significantly enriched in chemical weathering products and depleted in primary minerals compared with the cobble clasts. The alteration pathways consist primarily of the development of smectite, kaolinite, carbonate minerals, and amorphous material. Extensive Fe oxidation is evidenced by a decline in magnetic susceptibility and by increases in extractable Fe. If we assume the only input into the subglacial system is the water and ice-trapped gas supplied by basal melt, the net chemical alteration is explained through oxidation of organic matter equal to ∼0.7% of the bedrock mass and subsequent carbonation weathering. The underlying sedimentary rock is sufficiently rich in organic matter for this pathway to be plausible. For the O2 that is oxidizing organic matter to be supplied by basal meltwater, water fluxes would need to be three orders of magnitude larger than sediment fluxes. Independent models of basal melt and sediment transport at our field site confirm that such a difference between water and sediment flux is likely at the study site. The rate of subglacial carbonation weathering inferred from the Mt. Achernar Moraine site may be comparable to that found in high latitude subaerial environments. If Mt. Achernar Moraine is typical of other Antarctic sites, the subglacial land surface of Antarctica does play a role in global geochemical cycling.Item Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica(Cambridge UP, 2020-02) Kassab, Christine M.; Licht, Kathy J.; Petersson, Rickard; Lindbäck, Katrin; Graly, Joseph A.; Kaplan, Michael R.; Earth Sciences, School of ScienceMount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.Item Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland(Elsevier, 2018-07) Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.; Earth Sciences, School of ScienceIn order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.Item Middle to Late Pleistocene stability of the central East Antarctic Ice Sheet at the head of Law Glacier(GSA, 2017-08) Kaplan, M. R.; Licht, Kathy J.; Winckler, G.; Schaefer, J. M.; Bader, Nicole; Mathieson, C.; Roberts, M.; Kassab, Christine M.; Schwartz, R.; Graly, Joseph A.; Earth Sciences, School of SciencePast behavior of outlet glaciers draining the East Antarctic Ice Sheet (EAIS) remains unresolved prior to Marine Isotope Stage 2 (MIS2). Study of blue ice moraines provides a relatively untapped approach to understand former EAIS activity. We focus on a blue ice moraine near Mount Achernar in the central Transantarctic Mountains, at the edge of the polar plateau. The well-preserved moraine consists of quasi-continuous or hummocky sediment ridges that form on top of upward-flowing, sublimating ice along the margin of Law Glacier. 10Be, 26Al, and 3He cosmogenic nuclide ages on boulders from the ridges are coherent and in general are progressively older with distance from the relatively clean ice of the Law Glacier margin. Moraines closest to the Law Glacier margin postdate MIS2; farther away, they date to the last glacial cycle, and with more distance they are hundreds of thousands of years old. We conclude that cosmogenic dating of some blue ice moraines can provide age limits for changes at the heads of outlet glaciers that drain the central East Antarctic Ice Sheet, including prior to MIS2. Furthermore, the geomorphological, cosmogenic nuclide, and sedimentological evidence imply that the East Antarctic polar plateau adjacent to the central Transantarctic Mountains has been relatively stable for at least 200 k.y.Item Polar desert chronologies through quantitative measurements of salt accumulation(Geological Society of America, 2018-02) Graly, Joseph A.; Licht, Kathy J.; Druschel, Gregory K.; Kaplan, Michael R.; Earth Sciences, School of ScienceWe measured salt concentration and speciation in the top horizons of moraine sediments from the Transantarctic Mountains (Antarctica) and compared the salt data to cosmogenic-nuclide exposure ages on the same moraine. Because the salts are primarily of atmospheric origin, and their delivery to the sediment is constant over relevant time scales, a linear rate of accumulation is expected. When salts are measured in a consistent grain-size fraction and at a consistent position within the soil column, a linear correlation between salt concentration and exposure age is evident. This correlation is strongest for boron-containing salts (R2 > 0.99), but is also strong (R2 ≈ 0.9) for most other water-extracted salt species. The relative mobility of salts in the soil column does not correspond to species solubility (borate is highly soluble). Instead, the highly consistent behavior of boron within the soil column is best explained by the extremely low vapor pressure of boric acid at cold temperatures. The environment is sufficiently dry that mobility of salt species within the soil column is controlled by vapor phase effects. In other cold desert settings, topsoil salts, specifically boron, may be employed as a proxy for relative sediment exposure age.Item Two Metrics Describing the Causes of Seasonal and Spatial Changes in Subglacial Aqueous Chemistry(Frontier, 2018) Graly, Joseph A.; Humphrey, Neil F.; Licht, Kathy J.; Earth Sciences, School of ScienceSeasonal change in surface melt input and spatial controls on the distribution of subglacial water can cause considerable variability in the aqueous chemistry of subglacial waters. Much of this variability has been interpreted in terms of a single variable: water residence time, with slow flow assumed to correlate with greater mineral dissolution and oxidative weathering. We synthesize data from a range of glacier and ice sheet settings to show that this approach does not adequately describe presently available data. Instead, we propose that two independent variables control spatial and seasonal changes in aqueous chemistry in subglacial settings: atmospheric gas abundance and sediment supply abundance. Where atmospheric gases are abundant, carbonation weathering is responsible for most of the subglacial chemical activity; where they become limited, oxidation weathering becomes more dominant. Where freshly comminuted sediment is abundant, easily dissolved minerals, especially calcite, have proportionally more influence on subglacial hydrochemistry; where sediment supply is limited, silicate minerals and less reactive carbonate minerals will increase in relative influence. In most settings, simple metrics of the abundance of SO42- and Ca2+ in the subglacial waters can characterize these two variables. In the data we synthesize, neither variable consistently correlates to the inferred water residence time, nor do the variables consistently correlate with each other. Spatial data show that point locations and small catchments on the glacial bed differ substantially from the integrated composition found at glacial outlets. The varied response in the subglacial aqueous chemistry to changing water residence times suggests complex control by a broad range of glaciological factors that affect water routing and subglacial sediment generation.Item Warm-based basal sediment entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures(Cambridge University Press, 2018-04) Graly, Joseph A.; Licht, Kathy J.; Kassab, Christine M.; Bird, Broxton W.; Kaplan, Michael R.; Earth Sciences, School of ScienceStable isotopes of water (δ18O and δ2H) were measured in the debris-laden ice underlying an Antarctic blue ice moraine, and in adjoining Law Glacier in the central Transantarctic Mountains. Air bubble content and morphology were assessed in shallow ice core samples. Stable isotope measurements plot either on the meteoric waterline or are enriched from it. The data cluster in two groups: the ice underlying the moraine has a δ2H:δ18O slope of 5.35 ± 0.92; ice from adjoining portions of Law Glacier has a slope of 6.69 ± 1.39. This enrichment pattern suggests the moraine's underlying blue ice entrained sediment through refreezing processes acting in an open system. Glaciological conditions favorable to warm-based sediment entrainment occur 30–50 km upstream. Basal melting and refreezing are further evidenced by abundant vapor figures formed from internal melting of the ice crystals. Both the moraine ice and Law Glacier are sufficiently depleted of heavy isotopes that their ice cannot be sourced locally, but instead must be derived from far-field interior regions of the higher polar plateau. Modeled ice flow speeds suggest the ice must be at least 80 ka old, with Law Glacier's ice possibly dating to OIS 5 and moraine ice older still.