ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gorain, Mahadeo"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing
    (ACS, 2020-09) Zhou, Xiaoju; Brown, Brooke A.; Siegel, Amanda P.; El Masry, Mohamed S.; Zeng, Xuyao; Song, Woran; Das, Amitava; Khandelwal, Puneet; Clark, Andrew; Singh, Kanhaiya; Guda, Poornachander R.; Gorain, Mahadeo; Timsina, Lava; Xuan, Yi; Jacobson, Stephen C.; Novotny, Milos V.; Roy, Sashwati; Agarwal, Mangilal; Lee, Robert J.; Sen, Chandan K.; Clemmer, David E.; Ghatak, Subhadip; Surgery, School of Medicine
    Bidirectional cell–cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte–macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.
  • Loading...
    Thumbnail Image
    Item
    Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair
    (Springer Nature, 2023-02-28) Pal, Durba; Ghatak, Subhadip; Singh, Kanhaiya; Abouhashem, Ahmed Safwat; Kumar, Manishekhar; El Masry, Mohamed S.; Mohanty, Sujit K.; Palakurti, Ravichand; Rustagi, Yashika; Tabasum, Saba; Khona, Dolly K.; Khanna, Savita; Kacar, Sedat; Srivastava, Rajneesh; Bhasme, Pramod; Verma, Sumit S.; Hernandez, Edward; Sharma, Anu; Reese, Diamond; Verma, Priyanka; Ghosh, Nandini; Gorain, Mahadeo; Wan, Jun; Liu, Sheng; Liu, Yunlong; Castro, Natalia Higuita; Gnyawali, Surya C.; Lawrence, William; Moore, Jordan; Perez, Daniel Gallego; Roy, Sashwati; Yoder, Mervin C.; Sen, Chandan K.; Surgery, School of Medicine
    Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.
  • Loading...
    Thumbnail Image
    Item
    Oncostatin M Improves Cutaneous Wound Re-Epithelialization and Is Deficient under Diabetic Conditions
    (Elsevier, 2022) Das, Amitava; Madeshiya, Amit K.; Biswas, Nirupam; Ghosh, Nandini; Gorain, Mahadeo; Rawat, Atul; Mahajan, Sanskruti P.; Khanna, Savita; Sen, Chandan K.; Roy, Sashwati; Surgery, School of Medicine
    Impaired re-epithelialization characterized by hyperkeratotic non-migratory wound epithelium is a hallmark of non-healing diabetic wounds. In chronic wounds, copious release of oncostatin M (OSM) from wound macrophages is evident. OSM is a potent keratinocyte activator. This work sought to understand the signal transduction pathway responsible for wound-re-epithelialization, the primary mechanism underlying wound closure. Daily topical treatment of full-thickness excisional wounds of C57bl/6 mice with recombinant murine OSM improved wound re-epithelialization and accelerated wound closure by bolstering keratinocyte proliferation and migration. OSM activated the JAK-STAT pathway as manifested by STAT3 phosphorylation. Such signal transduction in the human keratinocyte induced TP63, the master regulator of keratinocyte function. Elevated TP63 induced integrin beta 1, a known effector of keratinocyte migration. In diabetic wounds, OSM was more abundant compared to the level in non-diabetic wounds. However, in diabetic wounds OSM activity was compromised by glycation. Aminoguanidine, a deglycation agent, rescued compromised keratinocyte migration caused by glycated OSM. Finally, topical application of recombinant OSM improved keratinocyte migration and accelerated wound closure in db/db mice. This work recognizes that despite its abundance at the wound-site, OSM is inactivated by glycation and topical delivery of exogenous OSM is likely to be productive in accelerating diabetic wound closure.
  • Loading...
    Thumbnail Image
    Item
    Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1
    (NPG, 2020-11-11) Ghosh, Nandini; Das, Amitava; Biswas, Nirupam; Gnyawali, Surya; Singh, Kanhaiya; Gorain, Mahadeo; Polcyn, Carly; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.; Surgery, School of Medicine
    Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University