ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Goate, Alison M."

Now showing 1 - 10 of 44
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    5. Collaborative Study on the Genetics of Alcoholism: Functional genomics
    (Wiley, 2023) Gameiro-Ros, Isabel; Popova, Dina; Prytkova, Iya; Pang, Zhiping P.; Liu, Yunlong; Dick, Danielle; Bucholz, Kathleen K.; Agrawal, Arpana; Porjesz, Bernice; Goate, Alison M.; Xuei, Xiaoling; Kamarajan, Chella; COGA Collaborators; Tischfield, Jay A.; Edenberg, Howard J.; Slesinger, Paul A.; Hart, Ronald P.; Medical and Molecular Genetics, School of Medicine
    Alcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.
  • Loading...
    Thumbnail Image
    Item
    Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference
    (Wiley, 2024) Kloske, Courtney M.; Belloy, Michael E.; Blue, Elizabeth E.; Bowman, Gregory R.; Carrillo, Maria C.; Chen, Xiaoying; Chiba-Falek, Ornit; Davis, Albert A.; Di Paolo, Gilbert; Garretti, Francesca; Gate, David; Golden, Lesley R.; Heinecke, Jay W.; Herz, Joachim; Huang, Yadong; Iadecola, Costantino; Johnson, Lance A.; Kanekiyo, Takahisa; Karch, Celeste M.; Khvorova, Anastasia; Koppes-den Hertog, Sascha J.; Lamb, Bruce T.; Lawler, Paige E.; Le Guen, Yann; Litvinchuk, Alexandra; Liu, Chia-Chen; Mahinrad, Simin; Marcora, Edoardo; Marino, Claudia; Michaelson, Danny M.; Miller, Justin J.; Morganti, Josh M.; Narayan, Priyanka S.; Naslavsky, Michel S.; Oosthoek, Marlies; Ramachandran, Kapil V.; Ramakrishnan, Abhirami; Raulin, Ana-Caroline; Robert, Aiko; Saleh, Rasha N. M.; Sexton, Claire; Shah, Nilomi; Shue, Francis; Sible, Isabel J.; Soranno, Andrea; Strickland, Michael R.; Tcw, Julia; Thierry, Manon; Tsai, Li-Huei; Tuckey, Ryan A.; Ulrich, Jason D.; van der Kant, Rik; Wang, Na; Wellington, Cheryl L.; Weninger, Stacie C.; Yassine, Hussein N.; Zhao, Na; Bu, Guojun; Goate, Alison M.; Holtzman, David M.; Neurology, School of Medicine
    Introduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. Methods: In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. Results: This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. Discussion: Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. Highlights: APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.
  • Loading...
    Thumbnail Image
    Item
    Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders
    (Springer Nature, 2021-04) Rao, Xi; Thapa, Kriti S.; Chen, Andy B.; Lin, Hai; Gao, Hongyu; Reiter, Jill L.; Hargreaves, Katherine A.; Ipe, Joseph; Lai, Dongbing; Xuei, Xiaoling; Wang, Yue; Gu, Hongmei; Kapoor, Manav; Farris, Sean P.; Tischfield, Jay; Foroud, Tatiana; Goate, Alison M.; Skaar, Todd C.; Mayfield, R. Dayne; Edenberg, Howard J.; Liu, Yunlong; Medical and Molecular Genetics, School of Medicine
    Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3′ untranslated regions (3′UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3′UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.
  • Loading...
    Thumbnail Image
    Item
    Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders.
    (Springer, 2021-04) Rao, Xi; Thapa, Kriti S.; Chen, Andy B.; Lin, Hai; Gao, Hongyu; Reiter, Jill L.; Hargreaves, Katherine A.; Ipe, Joseph; Lai, Dongbing; Xuei, Xiaoling; Wang, Yue; Gu, Hongmei; Kapoor, Manav; Farris, Sean P.; Tischfield, Jay; Foroud, Tatiana; Goate, Alison M.; Skaar, Todd C.; Mayfield, R. Dayne; Edenberg, Howard J.; Liu, Yunlong
    Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.
  • Loading...
    Thumbnail Image
    Item
    Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals
    (American Medical Association, 2015-11) Ghani, Mahdi; Reitz, Christiane; Cheng, Rong; Vardarajan, Badri Narayan; Jun, Gyungah; Sato, Christine; Naj, Adam; Rajbhandary, Ruchita; Wang, Li-San; Valladares, Otto; Lin, Chiao-Feng; Larson, Eric B.; Graff-Radford, Neill R.; Evans, Denis; De Jager, Philip L.; Crane, Paul K.; Buxbaum, Joseph D.; Murrell, Jill R.; Raj, Towfique; Ertekin-Taner, Nilufer; Logue, Mark; Baldwin, Clinton T.; Green, Robert C.; Barnes, Lisa L.; Cantwell, Laura B.; Fallin, M. Daniele; Go, Rodney C. P.; Griffith, Patrick A.; Obisesan, Thomas O.; Manly, Jennifer J.; Lunetta, Kathryn L.; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Hendrie, Hugh; Hall, Kathleen S.; Goate, Alison M.; Byrd, Goldie S.; Kukull, Walter A.; Foroud, Tatiana M.; Haines, Jonathan L.; Farrer, Lindsay A.; Pericak-Vance, Margaret A.; Lee, Joseph H.; Schellenberg, Gerard D.; St. George-Hyslop, Peter; Mayeux, Richard; Rogaeva, Ekaterina; Department of Psychiatry, IU School of Medicine
    IMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS: The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.
  • Loading...
    Thumbnail Image
    Item
    Association of Structural Forms of 17q21.31 with the Risk of Progressive Supranuclear Palsy and MAPT Sub-haplotypes
    (medRxiv, 2024-02-28) Wang, Hui; Chang, Timothy S.; Dombroski, Beth A.; Cheng, Po-Liang; Si, Ya-Qin; Tucci, Albert; Patil, Vishakha; Valiente-Banuet, Leopoldo; Farrell, Kurt; Mclean, Catriona; Molina-Porcel, Laura; Alex, Rajput; De Deyn, Peter Paul; Le Bastard, Nathalie; Gearing, Marla; Donker Kaat, Laura; Van Swieten, John C.; Dopper, Elise; Ghetti, Bernardino F.; Newell, Kathy L.; Troakes, Claire; de Yébenes, Justo G.; Rábano-Gutierrez, Alberto; Meller, Tina; Oertel, Wolfgang H.; Respondek, Gesine; Stamelou, Maria; Arzberger, Thomas; Roeber, Sigrun; Müller, Ulrich; Hopfner, Franziska; Pastor, Pau; Brice, Alexis; Durr, Alexandra; Le Ber, Isabelle; Beach, Thomas G.; Serrano, Geidy E.; Hazrati, Lili-Naz; Litvan, Irene; Rademakers, Rosa; Ross, Owen A.; Galasko, Douglas; Boxer, Adam L.; Miller, Bruce L.; Seeley, Willian W.; Van Deerlin, Vivianna M.; Lee, Edward B.; White, Charles L., III; Morris, Huw R.; de Silva, Rohan; Crary, John F.; Goate, Alison M.; Friedman, Jeffrey S.; Leung, Yuk Yee; Coppola, Giovanni; Naj, Adam C.; Wang, Li-San; PSP genetics study group; Dickson, Dennis W.; Höglinger, Günter U.; Tzeng, Jung-Ying; Geschwind, Daniel H.; Schellenberg, Gerard D.; Lee, Wan-Ping; Pathology and Laboratory Medicine, School of Medicine
    Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, β, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, β, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, β, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and β were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1β1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1β1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1β1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1β1γ4. Moreover, H1β1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1β1γ1 to 77% in H1β1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.
  • Loading...
    Thumbnail Image
    Item
    Association of substance dependence phenotypes in the COGA sample
    (Wiley, 2015-05) Wetherill, Leah; Agrawal, Arpana; Kapoor, Manav; Bertelsen, Sarah; Bierut, Laura J.; Brooks, Andrew; Dick, Danielle; Hesselbrock, Michie; Hesselbrock, Victor; Koller, Daniel L.; Le, Nhung; Nurnberger Jr., John I.; Salvatore, Jessica E.; Schuckit, Marc; Tischfield, Jay A.; Wang, Jen-Chyong; Xuei, Xiaoling; Edenberg, Howard J.; Porjesz, Bernice; Bucholz, Kathleen; Goate, Alison M.; Foroud, Tatiana; Department of Medical & Molecular Genetics, IU School of Medicine
    Alcohol and drug use disorders are individually heritable (50%). Twin studies indicate that alcohol and substance use disorders share common genetic influences, and therefore may represent a more heritable form of addiction and thus be more powerful for genetic studies. This study utilized data from 2322 subjects from 118 European-American families in the Collaborative Study on the Genetics of Alcoholism sample to conduct genome-wide association analysis of a binary and a continuous index of general substance dependence liability. The binary phenotype (ANYDEP) was based on meeting lifetime criteria for any DSM-IV dependence on alcohol, cannabis, cocaine or opioids. The quantitative trait (QUANTDEP) was constructed from factor analysis based on endorsement across the seven DSM-IV criteria for each of the four substances. Heritability was estimated to be 54% for ANYDEP and 86% for QUANTDEP. One single-nucleotide polymorphism (SNP), rs2952621 in the uncharacterized gene LOC151121 on chromosome 2, was associated with ANYDEP (P = 1.8 × 10(-8) ), with support from surrounding imputed SNPs and replication in an independent sample [Study of Addiction: Genetics and Environment (SAGE); P = 0.02]. One SNP, rs2567261 in ARHGAP28 (Rho GTPase-activating protein 28), was associated with QUANTDEP (P = 3.8 × 10(-8) ), and supported by imputed SNPs in the region, but did not replicate in an independent sample (SAGE; P = 0.29). The results of this study provide evidence that there are common variants that contribute to the risk for a general liability to substance dependence.
  • Loading...
    Thumbnail Image
    Item
    Autosomal dominant and sporadic late onset Alzheimer's disease share a common in vivo pathophysiology
    (Oxford University Press, 2022) Morris, John C.; Weiner, Michael; Xiong, Chengjie; Beckett, Laurel; Coble, Dean; Saito, Naomi; Aisen, Paul S.; Allegri, Ricardo; Benzinger, Tammie L. S.; Berman, Sarah B.; Cairns, Nigel J.; Carrillo, Maria C.; Chui, Helena C.; Chhatwal, Jasmeer P.; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin; Fox, Nick C.; Ghetti, Bernardino; Goate, Alison M.; Gordon, Brian A.; Graff-Radford, Neill; Day, Gregory S.; Hassenstab, Jason; Ikeuchi, Takeshi; Jack, Clifford R.; Jagust, William J.; Jucker, Mathias; Levin, Johannes; Massoumzadeh, Parinaz; Masters, Colin L.; Martins, Ralph; McDade, Eric; Mori, Hiroshi; Noble, James M.; Petersen, Ronald C.; Ringman, John M.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shaw, Leslie M.; Toga, Arthur W.; Trojanowski, John Q.; Vöglein, Jonathan; Weninger, Stacie; Bateman, Randall J.; Buckles, Virginia D.; Dominantly Inherited Alzheimer Network; Alzheimer’s Disease Neuroimaging and Initiative; Neurology, School of Medicine
    The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-β42, amyloid-β40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-β42, amyloid-β40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.
  • Loading...
    Thumbnail Image
    Item
    Beyond GWAS: Investigating Structural Variants and Their Segregation in Familial Alzheimer’s Disease
    (Wiley, 2025-01-09) Gunasekaran, Tamil Iniyan; Reyes-Dumeyer, Dolly; Corvelo, André; Clarke, Wayne E.; Evani, Uday S.; Byrska-Bishop, Marta S.; Basile, Anna O.; Runnels, Alexi; Musunuri, Rajeeva O.; Narzisi, Giuseppe; Faber, Kelley M.; Goate, Alison M.; Boeve, Brad F.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Rosenberg, Roger N.; Tsuang, Debby W.; Rivera Mejia, Diones; Medrano, Martin; Lantigua, Rafael A.; Sweet, Robert; Bennett, David A.; Wilson, Robert S.; Foroud, Tatiana M.; Dalgard, Clifton L.; Mayeux, Richard; Zody, Michael; Vardarajan, Badri N.; Medical and Molecular Genetics, School of Medicine
    Background: Late‐Onset Alzheimer’s Disease (LOAD) is characterized by genetic heterogeneity and there is no single model explaining the genetic mode of inheritance. To date, more than 70 genetic loci associated with AD have been identified but they explain only a small proportion of AD heritability. Structural variants (SVs) may explain some of the missing AD heritability, and specifically, their segregation in AD families has yet to be investigated. Method: We analyzed WGS data from 197 NHW families (926 subjects, 58.5% affected) and 214 CH families (1,340 subjects, 59.17% affected). Manta, Absinthe, and MELT were used for large insertions/deletions calling from short‐read WGS, combined with Sniffles2 calls from 4 ONT‐sequenced genomes and an external SV call set from HGSVC on 32 PacBio‐sequenced genomes from the 1000 Genomes Project. Genotyping produced a unified project‐level VCF. We identified 45,251 insertions and 76,566 deletions genome‐wide. Variants were tested for segregation and pathogenicity using Annot‐SV, cadd‐SV, and Variant Effect Predictor. Segregation required SV presence in all affected family members and only in unaffected members five years younger than average disease onset. Result: We identified 453 insertions and 598 deletions segregating in 78.68% and 87.31% of NHW families, respectively. In CH families, 432 insertions and 460 deletions were segregating in 75.23% and 72.90% of the families, respectively. Genes overlapping with the SVs exhibited high expression levels in brain tissues. Notably, around 93% of insertions and 76% of deletions segregating in NHW and CH families were less than 1 kilobase pair (1kbp) in length. A total of 79 insertions and 96 deletions were found to be segregating in both NHW and CH families. Interestingly, a segregating insertion was observed in CH families overlapping within the CACNA2D3 gene, which was previously reported in a CH GWAS for clinical AD. A deletion segregating in NHW overlapped with the PSEN1, and another in a CH family overlapped with the PTK2B gene. Conclusion: Our findings suggested that there are several SVs associated with familial AD across CH and NHW families. Prioritizing the SVs based on their effects on gene function and expression will be helpful in understanding their contributions in AD.
  • Loading...
    Thumbnail Image
    Item
    Characterizing the Role of Brain Derived Neurotrophic Factor Genetic Variation in Alzheimer’s Disease Neurodegeneration
    (Public Library of Science, 2013-09-26) Honea, Robyn A.; Cruchaga, Carlos; Perea, Rodrigo D.; Saykin, Andrew J.; Burns, Jeffrey M.; Weinberger, Daniel R.; Goate, Alison M.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of Medicine
    There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF), may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs) impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154) who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met), rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459). We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108). No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850). We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD-related brain neurodegeneration.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • 5
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University