ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Evans-Molina, Carmella"

Now showing 1 - 10 of 166
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    100 years of insulin: celebrating the past, present and future of diabetes therapy
    (Springer Nature, 2021) Sims, Emily K.; Carr, Alice L.J.; Oram, Richard A.; DiMeglio, Linda A.; Evans-Molina, Carmella; Pediatrics, School of Medicine
    The year 2021 marks the centennial of Banting and Best's landmark description of the discovery of insulin. This discovery and insulin's rapid clinical deployment effectively transformed type 1 diabetes from a fatal diagnosis into a medically manageable chronic condition. In this Review, we describe key accomplishments leading to and building on this momentous occasion in medical history, including advancements in our understanding of the role of insulin in diabetes pathophysiology, the molecular characterization of insulin and the clinical use of insulin. Achievements are also viewed through the lens of patients impacted by insulin therapy and the evolution of insulin pharmacokinetics and delivery over the past 100 years. Finally, we reflect on the future of insulin therapy and diabetes treatment, as well as challenges to be addressed moving forward, so that the full potential of this transformative discovery may be realized.
  • Loading...
    Thumbnail Image
    Item
    4033 Evaluating the Effect of Prebiotics on the Gut Microbiome Profile and Beta-cell Function in Newly-Diagnosed Type 1 Diabetes
    (Cambridge University Press, 2020-07-29) Ismail, Heba M.; Evans-Molina, Carmella; DiMeglio, Linda; Pediatrics, School of Medicine
    OBJECTIVES/GOALS: Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β-cells. Emerging data suggest that differences in intestinal microbiota might be critically involved both in autoimmunity and in glucose homeostasis. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites positively by increasing production of beneficial short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity and secretion in healthy non-diabetic adults. Further, an acetylated and butyrylated form of HAMS (HAMS-AB) that increases beneficial SCFA production, namely acetate and butyrate, has been safe and effective in disease prevention in mouse T1D models. The objective of the proposed study is to assess the effect of administering a prebiotic, such as HAMS-AB, on the gut microbiome profile, SCFA production, glycemia and β-cell function in humans with T1D. METHODS/STUDY POPULATION: We hypothesize that administration of HAMS-AB will (i) improve the gut microbiome profile in humans with T1D, (ii) increase SCFA production, and (iii) improve β-cell health, β-cell function and overall glycemia. We propose a pilot randomized controlled cross-over trial of HAMS-AB in 12 youth with newly-diagnosed T1D. We will use state-of-the-art markers to profile the gut microbiome (using 16S rRNA sequencing), measure stool SCFA levels (using gas chromatography), asses β-cell stress/death (by measuring proinsulin to C-peptide ratios) and glycemia (assessed by continuous glucose monitoring and HbA1c measurements). RESULTS/ANTICIPATED RESULTS: We expect that the use of HAMS-AB in newly diagnosed youth with type 1 diabetes will alter the gut microbiome profile (thus increasing the number of fermenters and SCFA levels), β-cell function and glycemia in humans with T1D. DISCUSSION/SIGNIFICANCE OF IMPACT: Given the unknown long-term effects of immune-modulatory therapy on those at risk for or those diagnosed with T1D, the use of a prebiotic such as HAMS-AB offers a simple, safe, yet inexpensive and tolerated dietary alternative approach to mitigating disease.
  • Loading...
    Thumbnail Image
    Item
    57437 Effects of Prebiotics on the Gut Microbiome Profile, Beta-cell Function and Immune Markers in Newly-Diagnosed Type 1 Diabetes
    (Cambridge University Press, 2021) Ismail, Heba M.; Evans-Molina, Carmella; DiMeglio, Linda A.; Pediatrics, School of Medicine
    ABSTRACT IMPACT: The proposed research study will provide critical pilot data on the effect of using the prebiotic (HAMS-AB) on the gut microbiome profile, Beta-cell function and immune markers in humans with T1D. OBJECTIVES/GOALS: The overall objective of this study is to assess how the prebiotic high amylose maize starch that has been acetylated and butyrylated (HAMS-AB) impacts the gut microbiome profile, short chain fatty acid (SCFA) production, glycemia, Beta-cell function/health and immune responses in newly diagnosed youth with type 1 diabetes (T1D). METHODS/STUDY POPULATION: We are performing a pilot randomized cross-over trial. We plan to recruit 12 newly-diagnosed T1D youth with residual Beta-cell function between 12-16 years of age. We will profile the gut microbiome using metagenomics, measure stool SCFA levels using mass spectrometry, assess glycemia using continuous glucose monitoring, assess insulin production using mixed meal tolerance testing, assess Beta-cell stress using proinsulin/C-peptide levels, and test immune responses by examining cytokine levels and frequency, phenotype and function of T cell markers in peripheral blood. RESULTS/ANTICIPATED RESULTS: Thus far, we have enrolled 3 participants, 1 has completed the study. Baseline assessments indicate that we have technical feasibility of performing the above studies and measurements. Recruitment and enrollment are ongoing. We hypothesize that the use of HAMS-AB in newly diagnosed youth with T1D will (i) improve the gut microbiome profile, (ii) increase SCFA production, (iii) improve overall glycemia and Beta-cell function and (iv) modulate the immune system and mitigate autoimmunity. DISCUSSION/SIGNIFICANCE OF FINDINGS: Given the failure to develop a cure for T1D despite multiple completed intervention studies and the unknown long-term effects of immune-modulatory therapy on those at risk for or those diagnosed with T1D, prebiotics such as HAMS-AB may offer a simple, safe, yet inexpensive and tolerated dietary alternative approach to mitigating disease.
  • Loading...
    Thumbnail Image
    Item
    68722 Role of ER calcium in beta cell senescence and diabetes pathophysiology
    (Cambridge University Press, 2021) Weaver, Staci A.; Kono, Tatsuyoshi; Syed, Farooq; Bone, Robert; Evans-Molina, Carmella; Biochemistry and Molecular Biology, School of Medicine
    ABSTRACT IMPACT: The proposed study has the potential to inform new paradigms of type 1 diabetes prevention and therapy with the overall goal of improving β cell health during autoimmunity. OBJECTIVES/GOALS: Type 1 diabetes (T1D) results from immune-mediated destruction of pancreatic βcells. Recent data suggest that activation of senescence and acquisition of a senescence associated secretory phenotype (SASP) by βcells may contribute to T1D pathogenesis. However, the molecular mechanisms responsible for this phenotype are not well understood. METHODS/STUDY POPULATION: We hypothesize that loss of endoplasmic reticulum (ER) Ca2+ induces βcell senescence, SASP as well as mitochondrial dysfunction which drive T1D development. The current study utilizes SERCA2 KO INS-1 βcells (S2KO) exhibiting loss of ER Ca2+ and a SERCA2 haploinsufficient mice on a non-obese diabetic background (NOD-S2+/-) to test the role of ER Ca2+ loss during T1D development. Senescence associated βgalactosidase staining (SA-βgal), expression of senescence markers (RT-qPCR), mitochondrial function (Seahorse, TMRM) and mitochondrial copy number (qPCR) were all measured in S2KO versus WT βcells and are currently being measured in the NOD-S2+/- mouse model at 6, 8, 12, 14, and 16wks of age. RESULTS/ANTICIPATED RESULTS: RT-qPCR assays detecting senescence markers cdkn1a and cdkn2a and mitochondrial specific genes cox1 and nd1 were developed and validated in both INS-1 βcells and mouse islets. Mitochondrial function assay (Seahorse) was optimized for use in INS-1 βcells and is currently under development for use in intact mouse islets. S2KO βcells displayed increased SA- βgal staining as well as increased mitochondrial coupling efficiency (p=0.0146) and baseline mitochondrial copy number (p=0.0053) compared to WT βcells, suggesting a senescence phenotype and altered mitochondrial function. NOD-S2+/- mice exhibited increased expression of the senescence marker cdkn2a in the islet at 12wks (p=0.0117) compared to control mice, whereas cdkn1a remained unchanged across all timepoints tested. DISCUSSION/SIGNIFICANCE OF FINDINGS: Our results suggest that loss of SERCA2 and reduced ER Ca2+ alter βcell mitochondrial function and are associated with features of senescence. Future studies will test whether SERCA2 activation and/or senolytic/senomorphic drugs are able to prevent or delay diabetes onset in NOD-S2+/- mice.
  • Loading...
    Thumbnail Image
    Item
    A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes
    (Elsevier, 2023) Syed, Farooq; Singhal, Divya; Raedschelders, Koen; Krishnan, Preethi; Bone, Robert N.; McLaughlin, Madeline R.; Van Eyk, Jennifer E.; Mirmira, Raghavendra G.; Yang, Mei-Ling; Mamula, Mark J.; Wu, Huanmei; Liu, Xiaowen; Evans-Molina, Carmella; Pediatrics, School of Medicine
    Background: Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. Methods: Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. Findings: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. Interpretation: We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D.
  • Loading...
    Thumbnail Image
    Item
    A genomic data archive from the Network for Pancreatic Organ donors with Diabetes
    (Springer Nature, 2023-05-26) Perry, Daniel J.; Shapiro, Melanie R.; Chamberlain, Sonya W.; Kusmartseva, Irina; Chamala, Srikar; Balzano-Nogueira, Leandro; Yang, Mingder; Brant, Jason O.; Brusko, Maigan; Williams, MacKenzie D.; McGrail, Kieran M.; McNichols, James; Peters, Leeana D.; Posgai, Amanda L.; Kaddis, John S.; Mathews, Clayton E.; Wasserfall, Clive H.; Webb-Robertson, Bobbie-Jo M.; Campbell-Thompson, Martha; Schatz, Desmond; Evans-Molina, Carmella; Pugliese, Alberto; Concannon, Patrick; Anderson, Mark S.; German, Michael S.; Chamberlain, Chester E.; Atkinson, Mark A.; Brusko, Todd M.; Pediatrics, School of Medicine
    The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.
  • Loading...
    Thumbnail Image
    Item
    Abnormalities in proinsulin processing in islets from individuals with longstanding T1D
    (Elsevier, 2019-11) Sims, Emily K.; Syed, Farooq; Nyalwidhe, Julius; Bahnson, Henry T.; Haataja, Leena; Speake, Cate; Morris, Margaret A.; Balamurugan, Appakalai N.; Mirmira, Raghavendra G.; Nadler, Jerry; Mastracci, Teresa L.; Arvan, Peter; Greenbaum, Carla J.; Evans-Molina, Carmella; Pediatrics, School of Medicine
    We recently described the persistence of detectable serum proinsulin in a large majority of individuals with longstanding type 1 diabetes (T1D), including individuals with undetectable serum C-peptide. Here, we sought to further explore the mechanistic etiologies of persistent proinsulin secretion in T1D at the level of the islet, using tissues obtained from human donors. Immunostaining for proinsulin and insulin was performed on human pancreatic sections from the Network for Pancreatic Organ Donors with Diabetes (nPOD) collection (n = 24). Differential proinsulin processing enzyme expression was analyzed using mass spectrometry analysis of human islets isolated from pancreatic sections with laser capture microdissection (n = 6). Proinsulin processing enzyme mRNA levels were assessed using quantitative real-time PCR in isolated human islets (n = 10) treated with or without inflammatory cytokines. Compared to nondiabetic controls, immunostaining among a subset (4/9) of insulin positive T1D donor islets revealed increased numbers of cells with proinsulin-enriched, insulin-poor staining. T1D donor islets also exhibited increased proinsulin fluorescence intensity relative to insulin fluorescence intensity. Laser capture microdissection followed by mass spectrometry revealed reductions in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE) in T1D donors. Twenty-four hour treatment of human islets with inflammatory cytokines reduced mRNA expression of the processing enzymes PC1/3, PC2, and CPE. Taken together, these data provide new mechanistic insight into altered proinsulin processing in long-duration T1D and suggest that reduced β cell prohormone processing is associated with proinflammatory cytokine-induced reductions in proinsulin processing enzyme expression.
  • Loading...
    Thumbnail Image
    Item
    Achieving “PeaK-A” Insulin Secretion
    (American Diabetes Association, 2013) Evans-Molina, Carmella; Mirmira, Raghavendra G.; Medicine, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Adult-Onset Type 1 Diabetes: Current Understanding and Challenges
    (American Diabetes Association, 2021-11) Leslie, R. David; Evans-Molina, Carmella; Freund-Brown, Jacquelyn; Buzzetti, Raffaella; Dabelea, Dana; Gillespie, Kathleen M.; Goland, Robin; Jones, Angus G.; Kacher, Mark; Phillips, Lawrence S.; Rolandsson, Olov; Wardian, Jana L.; Dunne, Jessica L.; Pediatrics, School of Medicine
    Recent epidemiological data have shown that more than half of all new cases of type 1 diabetes occur in adults. Key genetic, immune, and metabolic differences exist between adult- and childhood-onset type 1 diabetes, many of which are not well understood. A substantial risk of misclassification of diabetes type can result. Notably, some adults with type 1 diabetes may not require insulin at diagnosis, their clinical disease can masquerade as type 2 diabetes, and the consequent misclassification may result in inappropriate treatment. In response to this important issue, JDRF convened a workshop of international experts in November 2019. Here, we summarize the current understanding and unanswered questions in the field based on those discussions, highlighting epidemiology and immunogenetic and metabolic characteristics of adult-onset type 1 diabetes as well as disease-associated comorbidities and psychosocial challenges. In adult-onset, as compared with childhood-onset, type 1 diabetes, HLA-associated risk is lower, with more protective genotypes and lower genetic risk scores; multiple diabetes-associated autoantibodies are decreased, though GADA remains dominant. Before diagnosis, those with autoantibodies progress more slowly, and at diagnosis, serum C-peptide is higher in adults than children, with ketoacidosis being less frequent. Tools to distinguish types of diabetes are discussed, including body phenotype, clinical course, family history, autoantibodies, comorbidities, and C-peptide. By providing this perspective, we aim to improve the management of adults presenting with type 1 diabetes.
  • Loading...
    Thumbnail Image
    Item
    Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells
    (Wiley, 2023-12-29) McLaughlin, Madeline R.; Weaver, Staci A.; Syed, Farooq; Evans-Molina, Carmella; Pediatrics, School of Medicine
    Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • ...
  • 17
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University