- Browse by Author
Browsing by Author "Ekanayaka, Thilini K."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Electronic structure of cobalt valence tautomeric molecules in different environments(RSC, 2023-02) Mishra, Ezra; Ekanayaka, Thilini K.; Panagiotakopoulos, Theodoros; Le, Duy; Rahman, Talat S.; Wang, Ping; McElveen, Kayleigh A.; Phillips, Jared P.; Zaz, M. Zaid; Yazdani, Saeed; N'Diaye, Alpha T.; Lai, Rebecca Y.; Streubel, Robert; Cheng, Ruihua; Shatruk, Michael; Dowben, Peter A.; Physics, School of ScienceFuture molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e., [CoIII(SQ)(Cat)(4-CN-py)2] ↔ [CoII(SQ)2(4-CN-py)2] and [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the CoII high-spin state.Item Evidence of dynamical effects and critical field in a cobalt spin crossover complex(Royal Society of Chemistry, 2022-01) Ekanayaka, Thilini K.; Wang, Ping; Yazdani, Saeed; Phillips, Jared Paul; Mishra, Esha; Dale, Ashley S.; N'Diaye, Alpha T.; Klewe, Christoph; Shafer, Padraic; Freeland, John; Streubel, Robert; Wampler, James Paris; Zapf, Vivien; Cheng, Ruihua; Shatruk, Michael; Dowben, Peter A.; Physics, School of ScienceThe [Co(SQ)2(4-CN-py)2] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ)2(4-CN-py)2].Item Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition(MDPI, 2021-10) Hao, Guanhua; N’Diaye, Alpha T.; Ekanayaka, Thilini K.; Dale, Ashley S.; Jiang, Xuanyuan; Mishra, Esha; Mellinger, Corbyn; Yazdani, Saeed; Freeland, John W.; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of ScienceThe X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.Item Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications(MDPI, 2021-03) Ekanayaka, Thilini K.; Hao, Guanhua; Mosey, Aaron; Dale, Ashley S.; Jiang, Xuanyuan; Yost, Andrew J.; Sapkota, Keshab R.; Wang, George T.; Zhang, Jian; N’Diaye, Alpha T.; Marshall, Andrew; Cheng, Ruihua; Naeemi, Azad; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of ScienceNonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.Item Probing the unpaired Fe spins across the spin crossover of a coordination polymer(RSC, 2021) Ekanayaka, Thilini K.; Kurz, Hannah; Dale, Ashley S.; Hao, Guanhua; Mosey, Aaron; Mishra, Esha; N'Diaye, Alpha T.; Cheng, Ruihua; Weber, Birgit; Dowben, Peter A.; Physics, School of ScienceFor the spin crossover coordination polymer [Fe(L1)(bipy)]n (where L1 is a N2O22− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J. Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition.Item The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials(MDPI, 2023-04-26) Yazdani, Saeed; Phillips, Jared; Ekanayaka, Thilini K.; Cheng, Ruihua; Dowben, Peter A.; Physics, School of ScienceSpin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.