- Browse by Author
Browsing by Author "Dubey, Nileshkumar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics(Elsevier, 2022) Ribeiro, Juliana S.; Sanz, Carolina K.; Münchow, Eliseu A.; Kalra, Nikhil; Dubey, Nileshkumar; Suárez, Carlos Enrique C.; Fenno, J. Christopher; Lund, Rafael G.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryObjectives: This work sought to formulate photocrosslinkable chlorhexidine (CHX)-laden methacrylated gelatin (CHX/GelMA) hydrogels with broad spectrum of action against endodontic pathogens as a clinically viable cell-friendly disinfection therapy prior to regenerative endodontics procedures. Methods: CHX/GelMA hydrogel formulations were successfully synthesized using CHX concentrations between 0.12 % and 5 % w/v. Hydrogel microstructure was evaluated by scanning electron microscopy (SEM). Swelling and enzymatic degradation were assessed to determine microenvironmental effects. Compression test was performed to investigate the influence of CHX incorporation on the hydrogels' biomechanics. The antimicrobial and anti-biofilm potential of the formulated hydrogels were assessed using agar diffusion assays and a microcosms biofilm model, respectively. The cytocompatibility was evaluated by exposing stem cells from human exfoliated deciduous teeth (SHEDs) to hydrogel extracts (i.e., leachable byproducts obtained from overtime hydrogel incubation in phosphate buffer saline). The data were analyzed using One- and Two-way ANOVA and Tukey's test (α = 0.05). Results: CHX/GelMA hydrogels were effectively prepared. NMR spectroscopy confirmed the incorporation of CHX into GelMA. The addition of CHX did not change the micromorphology (pore size) nor the swelling profile (p > 0.05). CHX incorporation reduced the degradation rate of the hydrogels (p < 0.001); whereas, it contributed to increased compressive modulus (p < 0.05). Regarding the antimicrobial properties, the incorporation of CHX showed a statistically significant decrease in the number of bacteria colonies at 0.12 % and 0.5 % concentration (p < 0.001) and completely inhibited the growth of biofilm at concentration levels 1 %, 2 %, and 5 %. Meanwhile, the addition of CHX, regardless of the concentration, did not lead to cell toxicity, as cell viability values were above 70 %. Significance: The addition of CHX into GelMA showed significant antimicrobial action against the pathogens tested, even at low concentrations, with the potential to be used as a cell-friendly injectable drug delivery system for root canal disinfection prior to regenerative endodontics.Item Three-Dimensional Printing of Clinical Scale and Personalized Calcium Phosphate Scaffolds for Alveolar Bone Reconstruction(Elsevier, 2022) Anderson, Margaret; Dubey, Nileshkumar; Bogie, Kath; Cao, Chen; Li, Junying; Lerchbacker, Joseph; Mendonça, Gustavo; Kauffman, Frederic; Bottino, Marco C.; Kaigler, Darnell; Biomedical and Applied Sciences, School of DentistryObjective: Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. Methods: Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. Results: Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). Significance: From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.