- Browse by Author
Browsing by Author "Dubey, Nileshkumar"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Engineering of Injectable Antibiotic-laden Fibrous Microparticles Gelatin Methacryloyl Hydrogel for Endodontic Infection Ablation(MDPI, 2022-01-16) Ribeiro, Juliana S.; Münchow, Eliseu A.; Bordini, Ester A. F.; Rodrigues, Nathalie S.; Dubey, Nileshkumar; Sasaki, Hajime; Fenno, John C.; Schwendeman, Steven; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryThis study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey's test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.Item Innovations in Craniofacial Bone and Periodontal Tissue Engineering – From Electrospinning to Converged Biofabrication(Sage, 2022) Aytac, Zeynep; Dubey, Nileshkumar; Daghrery, Arwa; Ferreira, Jessica A.; de Souza Araújo, Isaac J.; Castilho, Miguel; Malda, Jos; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryFrom a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.Item Metformin-Loaded Nanospheres Laden Photocrosslinkable Gelatin Hydrogel for Bone Tissue Engineering(Elsevier, 2021) Qu, Liu; Dubey, Nileshkumar; Ribeiro, Juliana S.; Bordini, Ester A. F.; Ferreira, Jessica A.; Xu, Jinping; Castilho, Rogerio M.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryThe aim of this investigation was to engineer metformin (MF)-loaded mesoporous silica nanospheres (MSNs)-laden gelatin methacryloyl (GelMA) photocrosslinkable hydrogels and test their effects on the mechanical properties, swelling ratio, drug release, cytocompatibility, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). As-received and carboxylated MSNs (MSNs-COOH) were characterized by scanning and transmission electron microscopies (SEM and TEM), as well as Fourier-transform infrared spectroscopy (FTIR) prior to hydrogel modification. MF-MSNs-COOH were obtained by loading MF into MSNs at a 1:1 mass ratio. Upon MSNs-COOH laden-hydrogels fabrication, the mechanical properties, swelling ratio and MF release were evaluated. SHEDs were seeded on the hydrogels and cytocompatibility was examined. The effects of the MF-MSNs-COOH/GelMA on the osteogenic differentiation of SHEDs were measured by ALP activity, Alizarin Red assay, and Real-time PCR. Statistics were performed using one-way ANOVA (α = 0.05). Morphological (SEM and TEM) analyses of pristine and carboxylated MSNs revealed a mean particle size of 200 nm and 218 nm, respectively. Importantly, an intrinsic nanoporous structure was noticed. Incorporation of MSNs-COOH at 1.5 mg/mL in GelMA led to the highest compressive modulus and swelling ratio. The addition of MSNs-COOH (up to 3 mg/mL) in GelMA did not impact cell viability. The presence of MF in MSNs-COOH/GelMA significantly promoted cell proliferation. Significant upregulation of osteogenic-related genes (except OCN) were seen for modified (MSNs-COOH and MF-MSNs-COOH) hydrogels when compared to GelMA. Altogether, the engineered MF-MSNs-COOH/GelMA shows great promise in craniomaxillofacial applications as an injectable, cell-free and bioactive therapeutics for bone regeneration.Item Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics(Elsevier, 2022) Ribeiro, Juliana S.; Sanz, Carolina K.; Münchow, Eliseu A.; Kalra, Nikhil; Dubey, Nileshkumar; Suárez, Carlos Enrique C.; Fenno, J. Christopher; Lund, Rafael G.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryObjectives: This work sought to formulate photocrosslinkable chlorhexidine (CHX)-laden methacrylated gelatin (CHX/GelMA) hydrogels with broad spectrum of action against endodontic pathogens as a clinically viable cell-friendly disinfection therapy prior to regenerative endodontics procedures. Methods: CHX/GelMA hydrogel formulations were successfully synthesized using CHX concentrations between 0.12 % and 5 % w/v. Hydrogel microstructure was evaluated by scanning electron microscopy (SEM). Swelling and enzymatic degradation were assessed to determine microenvironmental effects. Compression test was performed to investigate the influence of CHX incorporation on the hydrogels' biomechanics. The antimicrobial and anti-biofilm potential of the formulated hydrogels were assessed using agar diffusion assays and a microcosms biofilm model, respectively. The cytocompatibility was evaluated by exposing stem cells from human exfoliated deciduous teeth (SHEDs) to hydrogel extracts (i.e., leachable byproducts obtained from overtime hydrogel incubation in phosphate buffer saline). The data were analyzed using One- and Two-way ANOVA and Tukey's test (α = 0.05). Results: CHX/GelMA hydrogels were effectively prepared. NMR spectroscopy confirmed the incorporation of CHX into GelMA. The addition of CHX did not change the micromorphology (pore size) nor the swelling profile (p > 0.05). CHX incorporation reduced the degradation rate of the hydrogels (p < 0.001); whereas, it contributed to increased compressive modulus (p < 0.05). Regarding the antimicrobial properties, the incorporation of CHX showed a statistically significant decrease in the number of bacteria colonies at 0.12 % and 0.5 % concentration (p < 0.001) and completely inhibited the growth of biofilm at concentration levels 1 %, 2 %, and 5 %. Meanwhile, the addition of CHX, regardless of the concentration, did not lead to cell toxicity, as cell viability values were above 70 %. Significance: The addition of CHX into GelMA showed significant antimicrobial action against the pathogens tested, even at low concentrations, with the potential to be used as a cell-friendly injectable drug delivery system for root canal disinfection prior to regenerative endodontics.Item Three-Dimensional Printing of Clinical Scale and Personalized Calcium Phosphate Scaffolds for Alveolar Bone Reconstruction(Elsevier, 2022) Anderson, Margaret; Dubey, Nileshkumar; Bogie, Kath; Cao, Chen; Li, Junying; Lerchbacker, Joseph; Mendonça, Gustavo; Kauffman, Frederic; Bottino, Marco C.; Kaigler, Darnell; Biomedical and Applied Sciences, School of DentistryObjective: Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. Methods: Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. Results: Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). Significance: From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.