- Browse by Author
Browsing by Author "Dowben, Peter A."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Direct observation of the magnetic anisotropy of an Fe(II) spin crossover molecular thin film(IOPP, 2023-07) Dale, Ashley S.; Yazdani, Saeed; Ekanayaka, Thinlini K.; Mishra, Esha; Hu, Yuchen; Dowben, Peter A.; Freeland, John W.; Zhang, Jian; Cheng, Ruihua; Physics, School of ScienceIn this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2'−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5 eV molecule−1 indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimated g factor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations.Item Evidence of dynamical effects and critical field in a cobalt spin crossover complex(Royal Society of Chemistry, 2022-01) Ekanayaka, Thilini K.; Wang, Ping; Yazdani, Saeed; Phillips, Jared Paul; Mishra, Esha; Dale, Ashley S.; N'Diaye, Alpha T.; Klewe, Christoph; Shafer, Padraic; Freeland, John; Streubel, Robert; Wampler, James Paris; Zapf, Vivien; Cheng, Ruihua; Shatruk, Michael; Dowben, Peter A.; Physics, School of ScienceThe [Co(SQ)2(4-CN-py)2] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ)2(4-CN-py)2].Item Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition(MDPI, 2021-10) Hao, Guanhua; N’Diaye, Alpha T.; Ekanayaka, Thilini K.; Dale, Ashley S.; Jiang, Xuanyuan; Mishra, Esha; Mellinger, Corbyn; Yazdani, Saeed; Freeland, John W.; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of ScienceThe X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.Item Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications(MDPI, 2021-03) Ekanayaka, Thilini K.; Hao, Guanhua; Mosey, Aaron; Dale, Ashley S.; Jiang, Xuanyuan; Yost, Andrew J.; Sapkota, Keshab R.; Wang, George T.; Zhang, Jian; N’Diaye, Alpha T.; Marshall, Andrew; Cheng, Ruihua; Naeemi, Azad; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of ScienceNonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.Item Probing the unpaired Fe spins across the spin crossover of a coordination polymer(RSC, 2021) Ekanayaka, Thilini K.; Kurz, Hannah; Dale, Ashley S.; Hao, Guanhua; Mosey, Aaron; Mishra, Esha; N'Diaye, Alpha T.; Cheng, Ruihua; Weber, Birgit; Dowben, Peter A.; Physics, School of ScienceFor the spin crossover coordination polymer [Fe(L1)(bipy)]n (where L1 is a N2O22− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J. Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition.Item Quantitative Study of the Energy Changes in Voltage-Controlled Spin Crossover Molecular Thin Films(ACS, 2020-09) Mosey, Aaron; Dale, Ashley S.; Hao, Guanhua; N'Diaye, Alpha; Dowben, Peter A.; Cheng, Ruihua; Physics, School of ScienceVoltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1–1y)-borohydride, bipy = 2,2′-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high-spin and low-spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only nonvolatile voltage control of the spin state (“write”) but also current sensing of the molecular spin state (“read”). Monte Carlo Ising model simulations of the high-spin state occupancy, extracted from X-ray absorption spectroscopy, indicate that the energy difference between the low-spin and high-spin state is modified by 110 meV. Transport measurements demonstrate that four terminal voltage-controlled devices can be realized using this system.Item The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials(MDPI, 2023-04-26) Yazdani, Saeed; Phillips, Jared; Ekanayaka, Thilini K.; Cheng, Ruihua; Dowben, Peter A.; Physics, School of ScienceSpin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.Item Tunable spin-state bistability in a spin crossover molecular complex(IOP, 2019) Jiang, Xuanyuan; Hao, Guanhua; Wang, Xiao; Mosey, Aaron; Zhang, Xin; Yu, Le; Yost, Andrew J.; Zhang, Xin; DiChiara, Anthony D.; N'Diaye, Alpha T.; Cheng, Xuemei; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of SciencesThe spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.