- Browse by Author
Browsing by Author "Department of Radiation Oncology, IU School of Medicine"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item Biological Dose Estimation Model for Proton Beam Therapy(Scientific Research, 2015-05) Anferov, Vladimir; Das, Indra J.; Department of Radiation Oncology, IU School of MedicinePurpose: The recommended value for the relative biological effectiveness (RBE) of proton beams is currently assumed to be 1.1. However, there is increasing evidence that RBE increases towards the end of proton beam range that may increase the biological effect of proton beam in the distal regions of the dose deposition. Methods: A computational approach is presented for estimating the biological effect of the proton beam. It includes a method for calculating the dose averaged linear energy transfer (LET) along the measured Bragg peak and published LET to RBE conversion routine. To validate the proposed method, we have performed Monte Carlo simulations of the pristine Bragg peak at various beam energies and compared the analysis with the simulated results. A good agreement within 5% is observed between the LET analysis of the modeled Bragg peaks and Monte Carlo simulations. Results: Applying the method to the set of Bragg peaks measured at a proton therapy facility we have estimated LET and RBE values along each Bragg peak. Combining the individual RBE-weighted Bragg peaks with known energy modulation weights we have calculated the RBE-weighted dose in the modulated proton beam. The proposed computational method provides a tool for calculating dose averaged LET along the measured Bragg peak. Conclusions: Combined with a model to convert LET into RBE, this method enables calculation of RBE-weighted dose both in pristine Bragg peak and in modulated beam in proton therapy.Item Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry(Oxford, 2015-08) Akinio, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J.; Department of Radiation Oncology, IU School of MedicineA synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements.Item Comment on 'Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma'(British Journal of Cancer, 2015-12-01) Ellsworth, Susannah; Grossman, Stuart A.; Department of Radiation Oncology, IU School of MedicineItem Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning(Medknow Publications, 2016-01) Das, Indra J.; Cheng, Chee-Wai; Cao, Minsong; Johnstone, Peter A. S.; Department of Radiation Oncology, IU School of MedicineModern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.Item Cost analysis of adjuvant management strategies in early stage (stage I) testicular seminoma(Dove Medical Press, 2015) Cox, John A.; Gajjar, Shefali R.; Lanni, Thomas B.; Swanson, Todd A.; Department of Radiation Oncology, IU School of MedicineBACKGROUND: Acceptable post-orchiectomy adjuvant therapy strategies for stage I seminoma patients include surveillance, para-aortic radiation therapy (RT), dog-leg RT, and a single cycle of carboplatin. The required follow-up recommendations were amended by the National Comprehensive Cancer Network (NCCN) in 2012. Given a cause-specific survival of nearly 100%, a closer analysis of the reimbursement for each treatment strategy is warranted. METHODS: NCCN guidelines were used to design treatment plans for each acceptable adjuvant treatment strategy. Follow-up charges were generated for 10 years based on 2012 (version 1.2012; unchanged in current version 1.2013) and 2011 NCCN (version 2.2011) surveillance recommendations. The 2012 Medicare reimbursement rates were used to calculate each treatment strategy and incremental cost-effectiveness ratios to compare the treatment options. RESULTS: Under the current NCCN follow-up recommendations, the total reimbursements generated over 10 years of surveillance, para-aortic RT, dog-leg RT, and carboplatin were $10,643, $11,678, $9,662, and $10,405, respectively. This is compared with the reimbursements as per the 2011 NCCN recommendations: $20,986, $11,517, $9,394, and $20,365 respectively. Factoring the rates of relapse into a salvage model, observation was found to be more costly and less effective ($-1,831, $-7,318, $-7,010) in the adjuvant management of stage I seminoma patients. CONCLUSION: Based on incremental cost-effectiveness ratios, para-aortic RT, dog-leg RT, and carboplatin are cost-effective options for the treatment of stage I seminoma when compared with observation; however, surveillance could potentially spare as many as 80%-85% of men diagnosed with stage I seminoma from additional therapy after radical inguinal orchiectomy. Such cost and reimbursement analyses are becoming increasingly relevant, but are not meant to usurp sound clinical judgment. Further studies are required to validate these findings.Item CT and MRI fusion for postimplant prostate brachytherapy evaluation(IEEE, 2016-04) Dehghan, Ehsan; Le, Yi; Lee, Junghoon; Song, Danny; Prince, Jerry L.; Fichtinger, Gabor; Department of Radiation Oncology, IU School of MedicinePostoperative evaluation of prostate brachytherapy is typically performed using CT, which does not have sufficient soft tissue contrast for accurate anatomy delineation. MR-CT fusion enables more accurate localization of both anatomy and implanted radioactive seeds, and hence, improves the accuracy of postoperative dosimetry. We propose a method for automatic registration of MR and CT images without a need for manual initialization. Our registration method employs a point-to-volume registration scheme during which localized seeds in the CT images, produced by commercial treatment planning systems as part of the standard of care, are rigidly registered to preprocessed MRI images. We tested our algorithm on ten patient data sets and achieved an overall registration error of 1.6 ± 0.8 mm with a running time of less than 20s. With high registration accuracy and computational speed, and no need for manual intervention, our method has the potential to be employed in clinical applications.Item Dose perturbation effect of metallic spinal implants in proton beam therapy(2015) Jia, Yingcui; Zhao, Li; Cheng, Chee-Wei; McDonald, Mark W.; Das, Indra J.; Department of Radiation Oncology, IU School of MedicineThe purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1–2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.Item Dosimetric Comparison of Treatment Techniques: Brachytherapy, Intensity- Modulated Radiation Therapy, and Proton Beam in Partial Breast Irradiation(2015) Hansen, Tara M.; Bartlett, Gregory K.; Mannina, Edward M. Jr.; Srivastava, Shiv P.; Cox, John A.; Das, Indra J.; Department of Radiation Oncology, IU School of MedicinePurpose: To perform a dosimetric comparison of 3 accelerated partial breast irradiation techniques: catheter-based brachytherapy (BT), intensity-modulated radiation therapy (IMRT), and proton beam therapy (PBT). Patients and Methods: Twelve patients with left-sided breast cancer treated with SAVI (Strut-Adjusted Volume Implant) were selected in this study. The original BT plans were compared with optimum plans using IMRT and PBT for 34 Gy (RBE) with 1.1 RBE in 10 fractions using identical parameters for target and organs at risk. Results: Significant reduction in maximum dose to the ipsilateral breast was observed with PBT and IMRT (mean 108.58% [PBT] versus 107.78% [IMRT] versus 2194.43% [BT], P = .001 for both PBT and IMRT compared to BT). The mean dose to the heart was 0%, 1.38%, and 3.85%, for PBT, IMRT, and BT, respectively (P < .001 and P = .026). The chest wall mean dose was 10.07%, 14.65%, and 29.44% for PBT, IMRT, and BT, respectively (P = .001 and .013 compared to BT). The PBT was superior in reducing the mean ipsilateral lung dose (mean 0.04% versus 2.13% versus 5.4%, P = .025 and P < .001). There was no statistically significant difference in the maximum dose to the ipsilateral lung, chest wall, 3-mm skin rind or in the mean ipsilateral breast V50% among the 3 techniques (P = .168, .405, .067, and .780, respectively). PBT exhibited the greatest mean dose homogeneity index of 4.75 compared to 7.18 for IMRT (P = .001) and 195.82 for BT (P < .001). All techniques resulted in similar dose conformality (P = .143). Conclusion: This study confirms the dosimetric feasibility of PBT and IMRT to lower dose to organs at risk while still maintaining high target dose conformality. Though the results of this comparison are promising, continued clinical research is needed to better define the role of PBT and IMRT in the accelerated partial breast irradiation treatment of early-stage breast cancer.Item Education and Training Needs in the Radiation Sciences: Problems and Potential Solutions(BioOne, 2015-11) Dynlacht, Joseph R.; Zeman, Elaine M.; Held, Kathryn D.; Deye, James; Vikram, Bhadrasain; Joiner, Michael C.; Department of Radiation Oncology, IU School of MedicineThis article provides a summary of presentations focused on critical education and training issues in radiation oncology, radiobiology and medical physics from a workshop conducted as part of the 60th Annual Meeting of the Radiation Research Society held in Las Vegas, NV (September 21–24, 2014). Also included in this synopsis are pertinent comments and concerns raised by audience members, as well as recommendations for addressing ongoing and future challenges.Item Improved human observer performance in digital reconstructed radiograph verification in head and neck cancer radiotherapy.(Springer, 2015-10) Sturgeon, Jared D.; Cox, John A.; Mayo, Lauren L.; Gunn, G. Brandon; Zhang, Lifei; Balter, Peter A.; Dong, Lei; Awan, Musaddiq; Kocak-Uzel, Esengul; Mohamed, Abdallah Sherif Radwan; Rosenthal, David I.; Fuller, Clifton David; Department of Radiation Oncology, IU School of MedicinePurpose: Digitally reconstructed radiographs (DRRs) are routinely used as an a priori reference for setup correction in radiotherapy. The spatial resolution of DRRs may be improved to reduce setup error in fractionated radiotherapy treatment protocols. The influence of finer CT slice thickness reconstruction (STR) and resultant increased resolution DRRs on physician setup accuracy was prospectively evaluated. Methods: Four head and neck patient CT-simulation images were acquired and used to create DRR cohorts by varying STRs at 0.5, 1, 2, 2.5, and 3 mm. DRRs were displaced relative to a fixed isocenter using 0–5 mm random shifts in the three cardinal axes. Physician observers reviewed DRRs of varying STRs and displacements and then aligned reference and test DRRs replicating daily KV imaging workflow. A total of 1,064 images were reviewed by four blinded physicians. Observer errors were analyzed using nonparametric statistics (Friedman’s test) to determine whether STR cohorts had detectably different displacement profiles. Post hoc bootstrap resampling was applied to evaluate potential generalizability. Results: The observer-based trial revealed a statistically significant difference between cohort means for observer displacement vector error (p = 0.02) and for Z-axis (p < 0.01). Bootstrap analysis suggests a 15% gain in isocenter translational setup error with reduction of STR from 3 mm to ≤2 mm, though interobserver variance was a larger feature than STR-associated measurement variance. Conclusions: Higher resolution DRRs generated using finer CT scan STR resulted in improved observer performance at shift detection and could decrease operator-dependent geometric error. Ideally, CT STRs ≤2 mm should be utilized for DRR generation in the head and break neck.
- «
- 1 (current)
- 2
- 3
- »