- Browse by Author
Browsing by Author "Crane, Paul K."
Now showing 1 - 10 of 43
Results Per Page
Sort Options
Item A genome-wide search for pleiotropy in more than 100,000 harmonized longitudinal cognitive domain scores(BMC, 2023-06-22) Kang, Moonil; Ang, Ting Fang Alvin; Devine, Sherral A.; Sherva, Richard; Mukherjee, Shubhabrata; Trittschuh, Emily H.; Gibbons, Laura E.; Scollard, Phoebe; Lee, Michael; Choi, Seo-Eun; Klinedinst, Brandon; Nakano, Connie; Dumitrescu, Logan C.; Durant, Alaina; Hohman, Timothy J.; Cuccaro, Michael L.; Saykin, Andrew J.; Kukull, Walter A.; Bennett, David A.; Wang, Li-San; Mayeux, Richard P.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Crane, Paul K.; Au, Rhoda; Lunetta, Kathryn L.; Mez, Jesse B.; Farrer, Lindsay A.; Radiology and Imaging Sciences, School of MedicineBackground: More than 75 common variant loci account for only a portion of the heritability for Alzheimer's disease (AD). A more complete understanding of the genetic basis of AD can be deduced by exploring associations with AD-related endophenotypes. Methods: We conducted genome-wide scans for cognitive domain performance using harmonized and co-calibrated scores derived by confirmatory factor analyses for executive function, language, and memory. We analyzed 103,796 longitudinal observations from 23,066 members of community-based (FHS, ACT, and ROSMAP) and clinic-based (ADRCs and ADNI) cohorts using generalized linear mixed models including terms for SNP, age, SNP × age interaction, sex, education, and five ancestry principal components. Significance was determined based on a joint test of the SNP's main effect and interaction with age. Results across datasets were combined using inverse-variance meta-analysis. Genome-wide tests of pleiotropy for each domain pair as the outcome were performed using PLACO software. Results: Individual domain and pleiotropy analyses revealed genome-wide significant (GWS) associations with five established loci for AD and AD-related disorders (BIN1, CR1, GRN, MS4A6A, and APOE) and eight novel loci. ULK2 was associated with executive function in the community-based cohorts (rs157405, P = 2.19 × 10-9). GWS associations for language were identified with CDK14 in the clinic-based cohorts (rs705353, P = 1.73 × 10-8) and LINC02712 in the total sample (rs145012974, P = 3.66 × 10-8). GRN (rs5848, P = 4.21 × 10-8) and PURG (rs117523305, P = 1.73 × 10-8) were associated with memory in the total and community-based cohorts, respectively. GWS pleiotropy was observed for language and memory with LOC107984373 (rs73005629, P = 3.12 × 10-8) in the clinic-based cohorts, and with NCALD (rs56162098, P = 1.23 × 10-9) and PTPRD (rs145989094, P = 8.34 × 10-9) in the community-based cohorts. GWS pleiotropy was also found for executive function and memory with OSGIN1 (rs12447050, P = 4.09 × 10-8) and PTPRD (rs145989094, P = 3.85 × 10-8) in the community-based cohorts. Functional studies have previously linked AD to ULK2, NCALD, and PTPRD. Conclusion: Our results provide some insight into biological pathways underlying processes leading to domain-specific cognitive impairment and AD, as well as a conduit toward a syndrome-specific precision medicine approach to AD. Increasing the number of participants with harmonized cognitive domain scores will enhance the discovery of additional genetic factors of cognitive decline leading to AD and related dementias.Item Alzheimer's disease genetic risk variants beyond APOE ε4 predict mortality(Elsevier, 2017-08-24) Mez, Jesse; Marden, Jessica R.; Mukherjee, Shubhabrata; Walter, Stefan; Gibbons, Laura E.; Gross, Alden L.; Zahodne, Laura B.; Gilsanz, Paola; Brewster, Paul; Nho, Kwangsik; Crane, Paul K.; Larson, Eric B.; Glymour, M. Maria; Radiology and Imaging Sciences, School of Medicine• A genetic risk score from 21 non-APOE late-onset Alzheimer's disease risk variants predicts mortality. • The genetic risk score likely confers risk for mortality through its effect on dementia incidence. • Late-onset Alzheimer's disease risk loci effect estimates from genome-wide association unlikely suffer from selection bias.Item Alzheimer’s Disease Heterogeneity Explained by Polygenic Risk Scores Derived from Brain Transcriptomic Profiles(Wiley, 2023) Chung, Jaeyoon; Sahelijo, Nathan; Maruyama, Toru; Hu, Junming; Panitch, Rebecca; Xia, Weiming; Mez, Jesse; Stein, Thor D.; Alzheimer’s Disease Neuroimaging Initiative; Saykin, Andrew J.; Takeyama, Haruko; Farrer, Lindsay A.; Crane, Paul K.; Nho, Kwangsik; Jun, Gyungah R.; Radiology and Imaging Sciences, School of MedicineIntroduction: Alzheimer's disease (AD) is heterogeneous, both clinically and neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with transcriptome profiles from AD brains can explain AD clinical heterogeneity. Methods: We conducted co-expression network analysis and identified gene sets (modules) that were preserved in three AD transcriptome datasets and associated with AD-related neuropathological traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module and tested associations with mbPRSs for cognitive test scores, cognitively defined AD subgroups, and brain imaging data. Results: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two modules (M6 and M9) showed distinct associations with language and visuospatial functioning, respectively. They matched clinical subtypes and brain atrophy at specific regions. Discussion: Our findings demonstrate that polygenic profiling based on co-expressed gene sets can explain heterogeneity in AD patients, enabling genetically informed patient stratification and precision medicine in AD. Highlights: Co-expression gene-network analysis in Alzheimer's disease (AD) brains identified gene sets (modules) associated with AD heterogeneity. AD-associated modules were selected when genes in each module were enriched for neuritic plaques and neurofibrillary tangles. Polygenic risk scores from two selected modules were linked to the matching cognitively defined AD subgroups (language and visuospatial subgroups). Polygenic risk scores from the two modules were associated with cognitive performance in language and visuospatial domains and the associations were confirmed in regional-specific brain atrophy data.Item Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults(American Medical Association, 2016-06-01) Risacher, Shannon Leigh; McDonald, Brenna C.; Tallman, Eileen F.; West, John D.; Farlow, Martin R.; Unverzagt, Fredrick W.; Gao, Sujuan; Boustani, Malaz; Crane, Paul K.; Petersen, Ronald C.; Jack, Clifford R.; Jagust, William J.; Aisen, Paul S.; Weiner, Michael W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, School of MedicineIMPORTANCE: The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. OBJECTIVE: To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). DESIGN, SETTING, AND PARTICIPANTS: The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. MAIN OUTCOMES AND MEASURES: Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression. RESULTS: The 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed lower mean scores on Weschler Memory Scale-Revised Logical Memory Immediate Recall (raw mean scores: 13.27 for AC+ participants and 14.16 for AC- participants; P = .04) and the Trail Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for AC- participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC- participants; P = .04) than the 350 AC- participants (mean [SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in the AC+ participants relative to the AC- participants. CONCLUSIONS AND RELEVANCE: The use of AC medication was associated with increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among older adults should likely be discouraged if alternative therapies are available.Item Association of amyloid and cardiovascular risk with cognition: Findings from KBASE(Wiley, 2024) Chaudhuri, Soumilee; Dempsey, Desarae A.; Huang, Yen-Ning; Park, Tamina; Cao, Sha; Chumin, Evgeny J.; Craft, Hannah; Crane, Paul K.; Mukherjee, Shubhabrata; Choi, Seo-Eun; Scollard, Phoebe; Lee, Michael; Nakano, Connie; Mez, Jesse; Trittschuh, Emily H.; Klinedinst, Brandon S.; Hohman, Timothy J.; Lee, Jun-Young; Kang, Koung Mi; Sohn, Chul-Ho; Kim, Yu Kyeong; Yi, Dahyun; Byun, Min Soo; Risacher, Shannon L.; Nho, Kwangsik; Saykin, Andrew J.; Lee, Dong Young; KBASE Research Group; Radiology and Imaging Sciences, School of MedicineBackground: Limited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. Methods: Vascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. Results: Baseline analyses revealed that amyloid-negative (Aβ-) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ- CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. Conclusion: Our findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ- individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid-positive individuals had worse cognitive performance than Aβ- individuals. Highlights: Vascular risk significantly affects cognition in amyloid-negative older Koreans. Amyloid-negative CN older adults with high vascular risk had lower baseline cognition. Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk. The study underscores the impact of vascular health on the AD disease spectrum.Item Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals(American Medical Association, 2015-11) Ghani, Mahdi; Reitz, Christiane; Cheng, Rong; Vardarajan, Badri Narayan; Jun, Gyungah; Sato, Christine; Naj, Adam; Rajbhandary, Ruchita; Wang, Li-San; Valladares, Otto; Lin, Chiao-Feng; Larson, Eric B.; Graff-Radford, Neill R.; Evans, Denis; De Jager, Philip L.; Crane, Paul K.; Buxbaum, Joseph D.; Murrell, Jill R.; Raj, Towfique; Ertekin-Taner, Nilufer; Logue, Mark; Baldwin, Clinton T.; Green, Robert C.; Barnes, Lisa L.; Cantwell, Laura B.; Fallin, M. Daniele; Go, Rodney C. P.; Griffith, Patrick A.; Obisesan, Thomas O.; Manly, Jennifer J.; Lunetta, Kathryn L.; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Hendrie, Hugh; Hall, Kathleen S.; Goate, Alison M.; Byrd, Goldie S.; Kukull, Walter A.; Foroud, Tatiana M.; Haines, Jonathan L.; Farrer, Lindsay A.; Pericak-Vance, Margaret A.; Lee, Joseph H.; Schellenberg, Gerard D.; St. George-Hyslop, Peter; Mayeux, Richard; Rogaeva, Ekaterina; Department of Psychiatry, IU School of MedicineIMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS: The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.Item Associations between Amyloid, Cardiovascular Risk, and Cognitive Function in Korean Older Adults: Insights from the KBASE Cohort(Wiley, 2025-01-09) Chaudhuri, Soumilee; Dempsey, Desarae A.; Huang, Yen-Ning; Cao, Sha; Chumin, Evgeny J.; Craft, Hannah; Crane, Paul K.; Mukherjee, Shubhabrata; Choi, Seo-Eun; Lee, Michael L.; Scollard, Phoebe; Mez, Jesse; Trittschuh, Emily H.; Klinedinst, Brandon S.; Nakano, Connie; Hohman, Timothy J.; Yi, Dahyun; Byun, Min Soo; Risacher, Shannon L.; Nho, Kwangsik; Saykin, Andrew J.; Lee, Dong Young; Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE); Radiology and Imaging Sciences, School of MedicineBackground: Understanding the relationship between cardiovascular burden, amyloid, and cognition in Alzheimer’s disease (AD) is essential for targeted interventions, especially in ethnically diverse populations where research remains limited. This study aimed to investigate these relationships in a cohort of Korean older adults along the AD spectrum. Method: 526 participants from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE) cohort were included in this study. Vascular burden was quantified using Framingham Risk Score (FRS) and participants were categorized into four groups based on combinations of FRS (FRS High or FRS Low with a median split) and amyloid status (Aβ+ or Aβ‐ based on a cut‐off of 1.2373). Cognitive function was evaluated using standardized neuropsychological tests processed with structural equation models to produce domain scores for memory, executive functioning, language, and visuospatial. ANOVA was employed at baseline to analyze cognitive differences among these groups and within each clinical diagnosis. Longitudinal mixed effects models spanning a period of four years from the initial visit captured cognitive changes over time within these groups (Figure 1). Result: Significant group and pairwise differences were observed among the four groups in all cognitive domains (p < 0.0001). Stratified analysis within each clinical diagnoses group revealed that CN individuals in FRS high Aβ‐ demonstrated significantly lower memory scores compared to those with FRS low Aβ‐ (p < 0.0001), this trend was absent from MCI and AD groups (Figure 2). Longitudinally, FRS high Aβ+ and FRS low Aβ+ groups consistently demonstrated lower memory scores compared to the FRS low Aβ‐ group. Interestingly, no significant difference in cognition was observed between FRS high Aβ‐ and FRS low Aβ‐ groups over time. However, the most pronounced divergence in longitudinal cognition of the four FRS and Amyloid groups was observed within the MCI diagnosis group (Figure 3). Conclusion: This study highlights the differential impact of cardiovascular risk on cognition depending on amyloid status and clinical diagnosis group. This underscores the importance of considering both cardiovascular risk factors and amyloid pathology early‐on in understanding clinical manifestation and cognitive decline in the AD spectrum, particularly in ethnically diverse populations.Item Associations of Sex, Race, and Apolipoprotein E Alleles With Multiple Domains of Cognition Among Older Adults(American Medical Association, 2023) Walters, Skylar; Contreras, Alex G.; Eissman, Jaclyn M.; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse B.; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Peterson, Amalia; Gifford, Katherine A.; Cuccaro, Michael L.; Cruchaga, Carlos; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Crane, Paul K.; Hohman, Timothy J.; Dumitrescu, Logan; Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s Disease Genetics Consortium; Alzheimer’s Disease Sequencing Project; Radiology and Imaging Sciences, School of MedicineImportance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, setting, and participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main outcomes and measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (β = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (β = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.Item Astrocyte Reactivity Polygenic Risk Score May Predict Cognitive Decline in Alzheimer’s Disease(World Scientific, 2025) Phillips, Jared M.; Schneider, Julie A.; Bennett, David A.; Crane, Paul K.; Risacher, Shannon L.; Saykin, Andrew J.; Dumitrescu, Logan C.; Hohman, Timothy J.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineAlzheimer's disease (AD) is a polygenic disorder with a prolonged prodromal phase, complicating early diagnosis. Recent research indicates that increased astrocyte reactivity is associated with a higher risk of pathogenic tau accumulation, particularly in amyloid-positive individuals. However, few clinical tools are available to predict which individuals are likely to exhibit elevated astrocyte activation and, consequently, be susceptible to hyperphosphorylated tau-induced neurodegeneration. Polygenic risk scores (PRS) aggregate the effects of multiple genetic loci to provide a single, continuous metric representing an individual's genetic risk for a specific phenotype. We hypothesized that an astrocyte activation PRS could aid in the early detection of faster clinical decline. Therefore, we constructed an astrocyte activation PRS and assessed its predictive value for cognitive decline and AD biomarkers (i.e., cerebrospinal fluid [CSF] levels of Aβ1-42, total tau, and p-tau181) in a cohort of 791 elderly individuals. The astrocyte activation PRS showed significant main effects on cross-sectional memory (β = -0.07, p = 0.03) and longitudinal executive function (β = -0.01, p = 0.03). Additionally, the PRS interacted with amyloid positivity (p.intx = 0.02), whereby indicating that amyloid burden modifies the association between the PRS and annual rate of language decline. Furthermore, the PRS was negatively associated with CSF Aβ1-42 levels (β = -3.4, p = 0.07) and interacted with amyloid status, such that amyloid burden modifies the association between the PRS and CSF phosphorylated tau levels (p.intx = 0.08). These findings suggest that an astrocyte activation PRS could be a valuable tool for early disease risk prediction, potentially enabling intervention during the interval between pathogenic amyloid and tau accumulation.Item Characterization of Language Profiles in Cognitively‐Defined Subgroups of Alzheimer’s Disease(Wiley, 2025-01-03) Gallée, Jeanne; Gibbons, Laura E.; Mukherjee, Shubhabrata; Scollard, Phoebe; Choi, Seo-Eun; James, Bryan D.; Klinedinst, Brandon S.; Lee, Michael L.; Mez, Jesse; Trittschuh, Emily H.; Saykin, Andrew J.; Crane, Paul K.; Medical and Molecular Genetics, School of MedicineBackground: The relationship between Alzheimer’s disease (AD) pathology and the associated clinical syndrome a patient presents with remains indeterminate. Cognitively‐defined subgroups of AD have revealed distinctions based on relative cognitive impairments, including AD‐Language, where challenges in language are substantial, and AD‐No Domain, where no relative asymmetries across cognitive domains occur. Pathological features of AD have been associated as the primary neuropathology of the logopenic variant of primary progressive aphasia (lvPPA). Hallmark clinical features of lvPPA include relatively spared comprehension in the face of decline in naming and repetition abilities. This work aimed to test the hypothesis that the lvPPA language profile was overrepresented in AD‐Language when compared to AD‐No Domain. Method: Measures of verbal comprehension, confrontation naming, and phrase‐level repetition were obtained from all participants from the Religious Orders Study (ROS), the RUSH Memory and Aging Project (MAP) and the Minority Aging Research Study (MARS) using confirmatory factor analyses. We subsetted the data to include participants belonging to the AD‐Language and AD‐No Domain groups at their initial AD diagnosis visit. We compared patterns of language profiles based on strengths and weaknesses in comprehension, naming, and repetition. Pearson’s Chi‐squared tests with Yates continuity correction was used to test if the language patterns were statistically different between the two AD subgroups. Results: We analyzed language performance in 642 participants across AD‐Language (31.8%) and AD‐No Domain (68.2%) groups (Table 1). Thresholds were based on AD‐No Domain and set as the median for each subdomain (comprehension = ‐.101, naming = ‐.957, repetition = .233) to establish whether a score represented a relative strength or weakness in the language profile. Eight patterns of language profiles based on strengths and weaknesses in comprehension, naming, and repetition were formed (Figure 1). The distribution of language patterns differed significantly between AD‐Language and AD‐No Domain (χ2 = 97.6, p <.001). Furthermore, the lvPPA pattern was found more frequently in AD‐Language (χ2 = 28.1, p <.001). Conclusion: Heterogeneity within the AD‐Language spectrum includes a significant proportion that is consistent with the language profile of lvPPA. Relative performance in domains of verbal comprehension, confrontation naming, and phrase‐level repetition varied by AD subgroup.