- Browse by Author
Browsing by Author "Clapp, D. Wade"
Now showing 1 - 10 of 57
Results Per Page
Sort Options
Item A Mechanistic Approach to Identify Novel Therapeutic Drugs for Targeting FA-Disrupted Malignancies(2023-07) Sheth, Aditya Sukumar; Clapp, D. Wade; Vance, Gail; Angus, Steve; Herbert, Brittney-SheaThe Fanconi anemia (FA) signaling network plays a critical role in maintaining genomic integrity during interphase and mitosis. Biallelic germline mutation of any of the 22 genes that constitute this pathway (FANCA-FANCW) results in Fanconi Anemia, a cancer predisposition syndrome characterized by congenital malformations, bone marrow failure, and pediatric acute myeloid leukemias (AMLs). Among the general population, acquired genetic disruptions of the FA pathway are found in 30% of all sporadic cancers and over 15% of sporadic pediatric AMLs underscoring the importance of this pathway in the prevention of malignant transformation. Therefore, the identification of precision therapies for FA-deficient AML is a critical need. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established. We and others have uncovered the roles of FA proteins in mitotic regulation, suggesting additional mechanisms by which the FA pathway prevents genomic instability. Mutation of FANCA is the most common cause of FA and is one of the most frequently disrupted FA pathway genes in sporadic AML. To identify synthetic lethal targets of FANCA, we previously identified mitotic phospho-signaling pathways required for the survival of FANCA-/- patient-derived fibroblasts through a kinome-wide shRNA screen. We identified mitotic kinases CHEK1, PLK1, SLK, and TTK as potential targets, which suggests a mitosis-specific vulnerability of FA-deficient cells. These findings corroborate work by others who have identified synthetic lethal interactions between PLK1 and the FA pathway members, FANCG and BRCA1, suggesting that inactivation of the FA pathway may sensitize cancers to PLK1 inhibition. A more thorough understanding of FA pathway function in mitosis provides new insight into AML pathogenesis and suggests that genetic disruptions of the FA pathway may be predictive of sensitivity to PLK1 inhibition, providing a preclinical rationale for the development of precision therapies.Item Aberrant Neural Activity in Cortico-Striatal-Limbic Circuitry Underlies Behavioral Deficits in a Mouse Model of Neurofibromatosis Type 1(2022-05) Drozd, Hayley Paulina; McKinzie, David L.; Clapp, D. Wade; Shekhar, Anantha; Lukkes, Jodi L.; Lapish, Christopher L.; Block, Michelle L.Nearly 18% of children are diagnosed with developmental disabilities. Autism spectrum disorders (ASDs) and attention deficit hyperactivity disorder (ADHD) are increasingly common developmental disabilities, but neither is well understood. ADHD and ASD are both prevalent in the genetic disorder Neurofibromatosis type 1 (NF1) which impairs the Ras-MAPK/ERK pathway through mutation of the neurofibromin gene (NF1+/−). More broadly, syndromic forms of developmental disorders are often caused by mutations of proteins in pathways interconnected with Ras including TSC1/2, FMR1, and SynGAP. Of NF1 patients, around 30-50% are diagnosed with ASDs and more than 60% with ADHD. These studies are the first to show that male mice haploinsufficient for the Nf1 gene (Nf1+/−) exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD. They exhibit hyperactivity and impulsivity in an open field, delay discounting task, and cliff avoidance reaction test, rescuable through treatment with the clinically effective ADHD drug, guanfacine (α2A adrenergic receptor agonist). Previous experiments in our lab identified social deficits including deficits in consolidation of social memory. Using optogenetics and awake behaving electrode recordings, we explored the role of the cortico-striatal-limbic circuitry in impulsivity and in social deficits in male Nf1+/− mice. Manipulation of the prefrontal cortex, nucleus accumbens, or basolateral amygdala through optogenetics rescued social deficits. These studies are the first to record brain activity in a preclinical model of NF1 during impulsive behavior, finding broad spectrum changes across slow, delta, theta, and gamma oscillatory frequencies and decreased synchrony of the prefrontal cortex and nucleus accumbens during a delay discounting task. Overall, Nf1+/− male mice with deletion of a single NF1 gene recapitulate cognitive phenotypes of NF1 patients and are a useful model system to identify alterations in neural circuitry associated with ASD and ADHD.Item An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia(Ferrata Storti Foundation, 2017-06) Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun; Pediatrics, School of MedicineFanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.Item Addressing Gaps in Pediatric Scientist Development: The Department Chair View of Two AMSPDC-Sponsored Programs(Elsevier, 2020) Barrett, Katherine J.; Cooley, Michelle; Schwartz, Alan L.; Hostetter, Margaret K.; Clapp, D. Wade; Permar, Sallie R.; Pediatrics, School of MedicinePediatric physician-scientists are important members of the biomedical workforce who are instrumental in translating research advances into novel patient treatment strategies, yet their numbers have been declining over the past four decades. In order to increase the pipeline of pediatric physician-scientists, the Association of Medical School Pediatric Department Chairs (AMSPDC) leads the Frontiers in Science (FIS) and Pediatric Scientist Development Program (PSDP). These programs provide mentorship, networking, and funding opportunities for pediatric residents and fellows who are interested in pursuing research careers. To assess perceptions of program accessibility and efficacy, FIS and PSDP leadership surveyed AMSPDC membership between November 2018 and April 2019; 66 active department chairs responded. The decline in pediatric physician-scientists was identified as a common concern, and responding chairs identified several individual and institutional barriers to the physician-scientist career pathway and to participation in FIS and PSDP. Common barriers to participation included: undefined career paths for physician-scientists, a limited number of FIS slots annually, a perception that these programs support primarily basic science rather than other types of research, and competing funding through institutional T32 and K12 programs. To address these barriers, FIS and PSDP leadership will work with AMSPDC to explore ways to increase access to FIS, promote PSDP alumni mentoring of participating residents and fellows, and expand the scope of research supported by these programs. Assessments of FIS and PSDP will be ongoing, with the goal of improving program access in order to increase and diversify the pediatric physician-scientist workforce.Item Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK(PLOS, 2021-07-15) Chang, Long-Sheng; Oblinger, Janet L.; Smith, Abbi E.; Ferrer, Marc; Angus, Steven P.; Hawley, Eric; Petrilli, Alejandra M.; Beauchamp, Roberta L.; Riecken, Lars Björn; Erdin, Serkan; Poi, Ming; Huang, Jie; Bessler, Waylan K.; Zhang, Xiaohu; Guha, Rajarshi; Thomas, Craig; Burns, Sarah S.; Gilbert, Thomas S.K.; Jiang, Li; Li, Xiaohong; Lu, Qingbo; Yuan, Jin; He, Yongzheng; Dixon, Shelley A.H.; Masters, Andrea; Jones, David R.; Yates, Charles W.; Haggarty, Stephen J.; La Rosa, Salvatore; Welling, D. Bradley; Stemmer-Rachamimov, Anat O.; Plotkin, Scott R.; Gusella, James F.; Guinney, Justin; Morrison, Helen; Ramesh, Vijaya; Fernandez-Valle, Cristina; Johnson, Gary L.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of MedicineNeurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.Item Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial(Springer Nature, 2021-01) Fisher, Michael J.; Shih, Chie-Schin; Rhodes, Steven D.; Armstrong, Amy E.; Wolters, Pamela L.; Dombi, Eva; Zhang, Chi; Angus, Steven P.; Johnson, Gary L.; Packer, Roger J.; Allen, Jeffrey C.; Ullrich, Nicole J.; Goldman, Stewart; Gutmann, David H.; Plotkin, Scott R.; Rosser, Tena; Robertson, Kent A.; Widemann, Brigitte C.; Smith, Abbi E.; Bessler, Waylan K.; He, Yongzheng; Park, Su-Jung; Mund, Julie A.; Jiang, Li; Bijangi-Vishehsaraei, Khadijeh; Robinson, Coretta Thomas; Cutter, Gary R.; Korf, Bruce R.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of MedicineNeurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.Item Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation(Oxford, 2019-08) Rhodes, Steven D.; He, Yongzheng; Smith, Abbi; Jiang, Li; Lu, Qingbo; Mund, Julie; Li, Xiaohong; Bessler, Waylan; Qian, Shaomin; Dyer, William; Sandusky, George E.; Horvai, Andrew E.; Armstrong, Amy E.; Clapp, D. Wade; Pediatrics, School of MedicinePlexiform neurofibroma (PN) tumors are a hallmark manifestation of neurofibromatosis type 1 (NF1) that arise in the Schwann cell (SC) lineage. NF1 is a common heritable cancer predisposition syndrome caused by germline mutations in the NF1 tumor suppressor, which encodes a GTPase-activating protein called neurofibromin that negatively regulates Ras proteins. Whereas most PN are clinically indolent, a subset progress to atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP) and/or to malignant peripheral nerve sheath tumors (MPNSTs). In small clinical series, loss of 9p21.3, which includes the CDKN2A locus, has been associated with the genesis of ANNUBP. Here we show that the Cdkn2a alternate reading frame (Arf) serves as a gatekeeper tumor suppressor in mice that prevents PN progression by inducing senescence-mediated growth arrest in aberrantly proliferating Nf1−/− SC. Conditional ablation of Nf1 and Arf in the neural crest-derived SC lineage allows escape from senescence, resulting in tumors that accurately phenocopy human ANNUBP and progress to MPNST with high penetrance. This animal model will serve as a platform to study the clonal development of ANNUBP and MPNST and to identify new therapies to treat existing tumors and to prevent disease progression.Item Chemopreventative celecoxib fails to prevent schwannoma formation or sensorineural hearing loss in genetically engineered murine model of neurofibromatosis type 2(Impact Journals, 2017-10-24) Wahle, Benjamin M.; Hawley, Eric T.; He, Yongzheng; Smith, Abbi E.; Yuan, Jin; Masters, Andi R.; Jones, David R.; Gehlhausen, Jeffrey R.; Park, Su-Jung; Conway, Simon J.; Clapp, D. Wade; Yates, Charles W.; Otolaryngology -- Head and Neck Surgery, School of MedicineMutations in the tumor suppressor gene NF2 lead to Neurofibromatosis type 2 (NF2), a tumor predisposition syndrome characterized by the development of schwannomas, including bilateral vestibular schwannomas with complete penetrance. Recent work has implicated the importance of COX-2 in schwannoma growth. Using a genetically engineered murine model of NF2, we demonstrate that selective inhibition of COX-2 with celecoxib fails to prevent the spontaneous development of schwannomas or sensorineural hearing loss in vivo, despite elevated expression levels of COX-2 in Nf2-deficient tumor tissue. These results suggest that COX-2 is nonessential to schwannomagenesis and that the proposed tumor suppressive effects of NSAIDs on schwannomas may occur through COX-2 independent mechanisms.Item A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies(American Association for Cancer Research, 2017-11-01) Maertens, Ophélia; McCurrach, Mila E.; Braun, Benjamin S.; De Raedt, Thomas; Epstein, Inbal; Huang, Tannie Q.; Lauchle, Jennifer O.; Lee, Hyerim; Wu, Jianqiang; Cripe, Timothy P.; Clapp, D. Wade; Ratner, Nancy; Shannon, Kevin; Cichowski, Karen; Pediatrics, School of MedicinePreclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform. This effort, known as the Neurofibromatosis Preclinical Consortium (NFPC), was established to accelerate new treatments for tumors associated with neurofibromatosis type 1 (NF1). At its inception, there were no effective treatments for NF1 and few promising approaches on the horizon. Since 2008, participating laboratories have conducted 95 preclinical trials of 38 drugs or combinations through collaborations with 18 pharmaceutical companies. Importantly, these studies have identified 13 therapeutic targets, which have inspired 16 clinical trials. This review outlines the opportunities and challenges of building this type of consortium and highlights how it can accelerate clinical translation. We believe that this strategy of foundation-academic-industry partnering is generally applicable to many diseases and has the potential to markedly improve the success of therapeutic development.Item Combined CDK4/6 and ERK1/2 inhibition enhances anti-tumor activity in NF1-associated plexiform neurofibroma(American Association for Cancer Research, 2023) Flint, Alyssa C.; Mitchell, Dana K.; Angus, Steven P.; Smith, Abbi E.; Bessler, Waylan; Jiang, Li; Mang, Henry; Li, Xiaohong; Lu, Qingbo; Rodriguez, Brooke; Sandusky, George E.; Masters, Andi R.; Zhang, Chi; Dang, Pengtao; Koenig, Jenna; Johnson, Gary L.; Shen, Weihua; Liu, Jiangang; Aggarwal, Amit; Donoho, Gregory P.; Willard, Melinda D.; Bhagwat, Shripad V.; Clapp, D. Wade; Rhodes, Steven D.; Pediatrics, School of MedicinePurpose: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. Experimental design: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. Results: Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. Conclusions: These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.