Aberrant Neural Activity in Cortico-Striatal-Limbic Circuitry Underlies Behavioral Deficits in a Mouse Model of Neurofibromatosis Type 1

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2022
Department
Medical Neuroscience
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Nearly 18% of children are diagnosed with developmental disabilities. Autism spectrum disorders (ASDs) and attention deficit hyperactivity disorder (ADHD) are increasingly common developmental disabilities, but neither is well understood. ADHD and ASD are both prevalent in the genetic disorder Neurofibromatosis type 1 (NF1) which impairs the Ras-MAPK/ERK pathway through mutation of the neurofibromin gene (NF1+/−). More broadly, syndromic forms of developmental disorders are often caused by mutations of proteins in pathways interconnected with Ras including TSC1/2, FMR1, and SynGAP. Of NF1 patients, around 30-50% are diagnosed with ASDs and more than 60% with ADHD. These studies are the first to show that male mice haploinsufficient for the Nf1 gene (Nf1+/−) exhibit deficits in behavioral inhibition in multiple contexts, a key feature of ADHD. They exhibit hyperactivity and impulsivity in an open field, delay discounting task, and cliff avoidance reaction test, rescuable through treatment with the clinically effective ADHD drug, guanfacine (α2A adrenergic receptor agonist). Previous experiments in our lab identified social deficits including deficits in consolidation of social memory. Using optogenetics and awake behaving electrode recordings, we explored the role of the cortico-striatal-limbic circuitry in impulsivity and in social deficits in male Nf1+/− mice. Manipulation of the prefrontal cortex, nucleus accumbens, or basolateral amygdala through optogenetics rescued social deficits. These studies are the first to record brain activity in a preclinical model of NF1 during impulsive behavior, finding broad spectrum changes across slow, delta, theta, and gamma oscillatory frequencies and decreased synchrony of the prefrontal cortex and nucleus accumbens during a delay discounting task. Overall, Nf1+/− male mice with deletion of a single NF1 gene recapitulate cognitive phenotypes of NF1 patients and are a useful model system to identify alterations in neural circuitry associated with ASD and ADHD.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}