- Browse by Author
Browsing by Author "Chiang, Chien-Wei"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item A multistate transition model for statin‐induced myopathy and statin discontinuation(Wiley, 2021) Zhu, Yuxi; Chiang, Chien-Wei; Wang, Lei; Brock, Guy; Milks, M. Wesley; Cao, Weidan; Zhang, Pengyue; Zeng, Donglin; Donneyong, Macarius; Li, Lang; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthThe overarching goal of this study was to simultaneously model the dynamic relationships among statin exposure, statin discontinuation, and potentially statin-related myopathic outcomes. We extracted data from the Indiana Network of Patient Care for 134,815 patients who received statin therapy between January 4, 2004, and December 31, 2008. All individuals began statin treatment, some discontinued statin use, and some experienced myopathy and/or rhabdomyolysis while taking the drug or after discontinuation. We developed a militate model to characterize 12 transition probabilities among six different states defined by use or discontinuation of statin and its associated myopathy or rhabdomyolysis. We found that discontinuation of statin therapy was common and frequently early, with 44.4% of patients discontinuing therapy after 1 month, and discontinuation is a strong indicator for statin-induced myopathy (risk ratio, 10.8; p < 0.05). Women more likely than men (p < 0.05) and patients aged 65 years and older had a higher risk than those aged younger than 65 years to discontinue statin use or experience myopathy. In conclusion, we introduce an innovative multistate model that allows clear depiction of the relationship between statin discontinuation and statin-induced myopathy. For the first time, we have successfully demonstrated and quantified the relative risk of myopathy between patients who continued and discontinued statin therapy. Age and sex were two strong risk factors for both statin discontinuation and incident myopathy.Item The Concurrent Initiation of Medications Is Associated with Discontinuation of Buprenorphine Treatment for Opioid Use Disorder(medRxiv, 2020) Zhang, Pengyue; Chiang, Chien-Wei; Quinney, Sara; Donneyong, Macarius; Lu, Bo; Huang, Lei Frank; Cheng, Feixiong; Obstetrics and Gynecology, School of MedicineIntroduction Retention in buprenorphine treatment for opioid use disorder (OUD) yields better opioid abstinence and reduces all-cause mortality for patients with OUD. Despite significant efforts have been made to expand the availability and use of buprenorphine in the United States, its retention rates remain on a low level. The current study examines discontinuation of buprenorphine with respect to concurrent initiation of other medications using real-world evidence. Methods Case-crossover study was conducted to examine discontinuation of buprenorphine using a large-scale longitudinal health dataset including 148,306 commercially-insured individuals initiated on medications for opioid use disorder (MOUD). Odds ratios and Bonferroni adjusted p-values were calculated for medications and therapeutic classes of medications. Results Clonidine was associated with increased discontinuation risk of buprenorphine both using the buprenorphine dataset alone (OR = 1.583 and adjusted p-value = 1.22 × 10−6) and using naltrexone as a comparison drug (OR = 2.706 and adjusted p-value = 4.11 × 10−5). Opioid medications (oxycodone, morphine and fentanyl) and methocarbamol were associated with increased discontinuation risk of buprenorphine using the buprenorphine dataset alone (adjusted p-value < 0.05), but not significant using naltrexone as a comparison drug. 6 drug therapeutic classes were associated with increased discontinuation risk of buprenorphine both using the buprenorphine dataset alone and using naltrexone as a comparison drug (adjusted p-value < 0.05). Conclusion Concurrent initiation of medications is associated with increased discontinuation risk of buprenorphine. Opioid medications are prescribed among patients on MOUD and associated with increased discontinuation risk of buprenorphine. Analgesics is associated with increased discontinuation risk of buprenorphine for patients without previous exposure of pain medications.Item Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease(Springer Nature, 2021) Fang, Jiansong; Zhang, Pengyue; Zhou, Yadi; Chiang, Chien-Wei; Tan, Juan; Hou, Yuan; Stauffer, Shaun; Li, Lang; Pieper, Andrew A.; Cummings, Jeffrey; Cheng, Feixiong; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthWe developed an endophenotype disease module-based methodology for Alzheimer's disease (AD) drug repurposing and identified sildenafil as a potential disease risk modifier. Based on retrospective case-control pharmacoepidemiologic analyses of insurance claims data for 7.23 million individuals, we found that sildenafil usage was significantly associated with a 69% reduced risk of AD (hazard ratio = 0.31, 95% confidence interval 0.25-0.39, P<1.0×10-8). Propensity score stratified analyses confirmed that sildenafil is significantly associated with a decreased risk of AD across all four drug cohorts we tested (diltiazem, glimepiride, losartan and metformin) after adjusting age, sex, race, and disease comorbidities. We also found that sildenafil increases neurite growth and decreases phospho-tau expression in AD patient-induced pluripotent stem cells-derived neuron models, supporting mechanistically its potential beneficial effect in Alzheimer's disease. The association between sildenafil use and decreased incidence of AD does not establish causality or its direction, which requires a randomized clinical trial approach.Item Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy(Wiley, 2018-02-20) Wang, Xueying; Zhang, Pengyue; Chiang, Chien-Wei; Wu, Hengyi; Shen, Li; Ning, Xia; Zeng, Donglin; Wang, Lei; Quinney, Sara K.; Feng, Weixing; Li, Lang; Radiology and Imaging Sciences, School of MedicineDrug-drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic medical record (EMR) database and the FDA's adverse event reporting system (FAERS) database are the major data sources for mining and testing the ADE associated DDI signals. Most DDI data mining methods focus on pair-wise drug interactions, and methods to detect high-dimensional DDIs in medical databases are lacking. In this paper, we propose 2 novel mixture drug-count response models for detecting high-dimensional drug combinations that induce myopathy. The "count" indicates the number of drugs in a combination. One model is called fixed probability mixture drug-count response model with a maximum risk threshold (FMDRM-MRT). The other model is called count-dependent probability mixture drug-count response model with a maximum risk threshold (CMDRM-MRT), in which the mixture probability is count dependent. Compared with the previous mixture drug-count response model (MDRM) developed by our group, these 2 new models show a better likelihood in detecting high-dimensional drug combinatory effects on myopathy. CMDRM-MRT identified and validated (54; 374; 637; 442; 131) 2-way to 6-way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR data do. The consistency of 2 mixture models' parameters and local false discovery rate estimates are evaluated through statistical simulation studies.Item Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease(Cold Spring Harbor Laboratory, 2021) Xu, Jielin; Zhang, Pengyue; Huang, Yin; Zhou, Yadi; Hou, Yuan; Bekris, Lynn M.; Lathia, Justin; Chiang, Chien-Wei; Li, Lang; Pieper, Andrew A.; Leverenz, James B.; Cummings, Jeffrey; Cheng, Feixiong; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthBecause disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, P < 1.0 × 10-8). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, P < 1.0 × 10-8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.Item A pharmacovigilance study of pharmacokinetic drug interactions using a translational informatics discovery approach(Wiley, 2021) Wang, Lei; Shendre, Aditi; Chiang, Chien-Wei; Cao, Weidan; Ning, Xia; Zhang, Ping; Zhang, Pengyue; Li, Lang; Biostatistics, School of Public HealthBackground While the pharmacokinetic (PK) mechanisms for many drug interactions (DDIs) have been established, pharmacovigilance studies related to these PK DDIs are limited. Using a large surveillance database, a translational informatics approach can systematically screen adverse drug events (ADEs) for many DDIs with known PK mechanisms. Methods We collected a set of substrates and inhibitors related to the cytochrome P450 (CYP) isoforms, as recommended by the United States Food and Drug Administration (FDA) and Drug Interactions Flockhart table™. The FDA's Adverse Events Reporting System (FAERS) was used to obtain ADE reports from 2004 to 2018. The substrate and inhibitor information were used to form PK DDI pairs for each of the CYP isoforms and Medical Dictionary for Regulatory Activities (MedDRA) preferred terms used for ADEs in FAERS. A shrinkage observed-to-expected ratio (Ω) analysis was performed to screen for potential PK DDI and ADE associations. Results We identified 149 CYP substrates and 62 CYP inhibitors from the FDA and Flockhart tables. Using FAERS data, only those DDI-ADE associations were considered that met the disproportionality threshold of Ω > 0 for a CYP substrate when paired with at least two inhibitors. In total, 590 ADEs were associated with 2085 PK DDI pairs and 38 individual substrates, with ADEs overlapping across different CYP substrates. More importantly, we were able to find clinical and experimental evidence for the paclitaxel-clopidogrel interaction associated with peripheral neuropathy in our study. Conclusion In this study, we utilized a translational informatics approach to discover potentially novel CYP-related substrate-inhibitor and ADE associations using FAERS. Future clinical, population-based and experimental studies are needed to confirm our findings.Item PhenoDEF: a corpus for annotating sentences with information of phenotype definitions in biomedical literature(Springer, 2022) Binkheder, Samar; Wu, Heng-Yi; Quinney, Sara K.; Zhang, Shijun; Zitu, Md. Muntasir; Chiang, Chien-Wei; Wang, Lei; Jones, Josette; Li, Lang; BioHealth Informatics, School of Informatics and ComputingBackground Adverse events induced by drug-drug interactions are a major concern in the United States. Current research is moving toward using electronic health record (EHR) data, including for adverse drug events discovery. One of the first steps in EHR-based studies is to define a phenotype for establishing a cohort of patients. However, phenotype definitions are not readily available for all phenotypes. One of the first steps of developing automated text mining tools is building a corpus. Therefore, this study aimed to develop annotation guidelines and a gold standard corpus to facilitate building future automated approaches for mining phenotype definitions contained in the literature. Furthermore, our aim is to improve the understanding of how these published phenotype definitions are presented in the literature and how we annotate them for future text mining tasks. Results Two annotators manually annotated the corpus on a sentence-level for the presence of evidence for phenotype definitions. Three major categories (inclusion, intermediate, and exclusion) with a total of ten dimensions were proposed characterizing major contextual patterns and cues for presenting phenotype definitions in published literature. The developed annotation guidelines were used to annotate the corpus that contained 3971 sentences: 1923 out of 3971 (48.4%) for the inclusion category, 1851 out of 3971 (46.6%) for the intermediate category, and 2273 out of 3971 (57.2%) for exclusion category. The highest number of annotated sentences was 1449 out of 3971 (36.5%) for the “Biomedical & Procedure” dimension. The lowest number of annotated sentences was 49 out of 3971 (1.2%) for “The use of NLP”. The overall percent inter-annotator agreement was 97.8%. Percent and Kappa statistics also showed high inter-annotator agreement across all dimensions. Conclusions The corpus and annotation guidelines can serve as a foundational informatics approach for annotating and mining phenotype definitions in literature, and can be used later for text mining applications.Item Random control selection for conducting high-throughput adverse drug events screening using large-scale longitudinal health data(Wiley, 2021-09) Chiang, Chien-Wei; Zhang, Penyue; Donneyong, Macarius; Chen, You; Su, Yu; Li, Lang; Biostatistics, School of Public HealthCase-control design based high-throughput pharmacoinformatics study using large-scale longitudinal health data is able to detect new adverse drug event (ADEs) signals. Existing control selection approaches for case-control design included the dynamic/super control selection approach. The dynamic/super control selection approach requires all individuals to be evaluated at all ADE case index dates, as the individuals' eligibilities as control depend on ADE/enrollment history. Thus, using large-scale longitudinal health data, the dynamic/super control selection approach requires extraordinarily high computational time. We proposed a random control selection approach in which ADE case index dates were matched by randomly generated control index dates. The random control selection approach does not depend on ADE/enrollment history. It is able to significantly reduce computational time to prepare case-control data sets, as it requires all individuals to be evaluated only once. We compared the performance metrics of all control selection approaches using two large-scale longitudinal health data and a drug-ADE gold standard including 399 drug-ADE pairs. The F-scores for the random control selection approach were between 0.586 and 0.600 compared to between 0.545 and 0.562 for dynamic/super control selection approaches. The random control selection approach was ~ 1000 times faster than dynamic/super control selection approach on preparing case-control data sets. With large-scale longitudinal health data, a case-control design-based pharmacoinformatics study using random control selection is able to generate comparable ADE signals than the existing control selection approaches. The random control selection approach also significantly reduces computational time to prepare the case-control data sets.Item Text mining for drug-drug interaction(Springer-Verlag, 2014) Wu, Heng-Yi; Chiang, Chien-Wei; Li, Lang; Department of Medicine, IU School of MedicineIn order to understand the mechanisms of drug-drug interaction (DDI), the study of pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenetics (PG) data are significant. In recent years, drug PK parameters, drug interaction parameters, and PG data have been unevenly collected in different databases and published extensively in literature. Also the lack of an appropriate PK ontology and a well-annotated PK corpus, which provide the background knowledge and the criteria of determining DDI, respectively, lead to the difficulty of developing DDI text mining tools for PK data collection from the literature and data integration from multiple databases.To conquer the issues, we constructed a comprehensive pharmacokinetics ontology. It includes all aspects of in vitro pharmacokinetics experiments, in vivo pharmacokinetics studies, as well as drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three-level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK corpus was demonstrated by a drug interaction extraction text mining analysis.The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions.Item Translational Biomedical Informatics and Pharmacometrics Approaches in the Drug Interactions Research(Wiley, 2018) Zhang, Pengyue; Wu, Heng-Yi; Chiang, Chien-Wei; Binkheder, Samar; Wang, Xueying; Zeng, Donglin; Quinney, Sara K.; Li, Lang; BioHealth Informatics, School of Informatics and ComputingDrug interaction is a leading cause of adverse drug events and a major obstacle for current clinical practice. Pharmacovigilance data mining, pharmacokinetic modeling, and text mining are computation and informatic tools on integrating drug interaction knowledge and generating drug interaction hypothesis. We provide a comprehensive overview of these translational biomedical informatics methodologies with related databases. We hope this review illustrates the complementary nature of these informatic approaches and facilitates the translational drug interaction research.