- Browse by Author
Browsing by Author "Cheng, Chee-Wai"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning(Medknow Publications, 2016-01) Das, Indra J.; Cheng, Chee-Wai; Cao, Minsong; Johnstone, Peter A. S.; Department of Radiation Oncology, IU School of MedicineModern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.Item A quality assurance phantom for electronic portal imaging devices(American Association of Physicists in Medicine, 2011) Das, Indra J.; Cao, Minsong; Cheng, Chee-Wai; Misic, Vladimir; Scheuring, Klaus; Schüle, Edmund; Johnstone, Peter A.S.; Radiation Oncology, School of MedicineElectronic portal imaging device (EPID) plays an important role in radiation therapy portal imaging, geometric and dosimetric verification. Consistent image quality and stable radiation response is necessary for proper utilization that requires routine quality assurance (QA). A commercial ‘EPID QC’ phantom weighing 3.8 kg with a dimension of 25 × 25 × 4.8 cm3 is used for EPID QA. This device has five essential tools to measure the geometric accuracy, signal‐to‐noise ratio (SNR), dose linearity, and the low‐ and the high‐contrast resolutions. It is aligned with beam divergence to measure the imaging and geometric parameters in both X and Y directions, and can be used as a baseline check for routine QA. The low‐contrast tool consists of a series of holes with various diameters and depths in an aluminum slab, very similar to the Las Vegas phantom. The high‐resolution contrast tool provides the modulation transfer function (MTF) in both the x‐ and y‐dimensions to measure the focal spot of linear accelerator that is important for imaging and small field dosimetry. The device is tested in different institutions with various amorphous silicon imagers including Elekta, Siemens and Varian units. Images of the QA phantom were acquired at 95.2 cm source‐skin‐distance (SSD) in the range 1–15 MU for a 26 × 26 cm2 field and phantom surface is set normal to the beam direction when gantry is at 0° and 90°. The epidSoft is a software program provided with the EPID QA phantom for analysis of the data. The preliminary results using the phantom on the tested EPID showed very good low‐contrast resolution and high resolution, and an MTF (0.5) in the range of 0.3–0.4 lp/mm. All imagers also exhibit satisfactory geometric accuracy, dose linearity and SNR, and are independent of MU and spatial orientations. The epidSoft maintains an image analysis record and provides a graph of the temporal variations in imaging parameters. In conclusion, this device is simple to use and provides testing on basic and advanced imaging parameters for daily QA on any imager used in clinical practicesItem A semi-empirical model for the therapeutic range shift estimation caused by inhomogeneities in proton beam therapy(American Association of Physicists in Medicine, 2012-03-08) Moskvin, Vadim; Cheng, Chee-Wai; Fanelli, Leia; Zhao, Li; Das, Indra J.; Radiation Oncology, School of MedicineThe purpose of this study was to devise a simple semi-empirical model to estimate the range shift in clinical practices with high-Z inhomogeneity in proton beam. A semi-empirical model utilizing the logarithmic dependence on Z in stopping power from Bohr's classical approach has been developed to calculate the range shift due to the presence of inhomogeneity. Range shift from metallic plates of atomic number Z of various thicknesses were measured in water using a parallel plate ionization chamber and calculated with the FLUKA Monte Carlo code. The proton range shifts for bone and polymethyl methacrylate (PMMA) were estimated using the semi-empirical model and compared with Monte Carlo calculation. The semi-empirical equation to determine range shift and water equivalent thickness is presented. The model predicts a shift of the therapeutic range to within 2.5% accuracy for initial proton energies of 50 to 250 MeV and atomic numbers from 3.3 (effective Z for water) to 82. This equation is independent of beam energy, and thus provides range shift from high-Z materials without the knowledge of proton energy. The proposed method of calculating the therapeutic range shift accurately requires only knowledge of the effective or actual atomic number of the inhomogeneity and the thickness of the inhomogeneity along the beam direction. The model generalizes the range shift calculation for any material based on its effective atomic number, and permits reliable prediction of the range shift for material combinations where no data is currently available. The proposed model can be readily implemented in routine clinical practice for proton range shift estimation and quality assurance on the treatment planning.