- Browse by Author
Browsing by Author "Chen, Wei"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe(Oxford University Press, 2023-01-11) Heyza, Joshua R.; Ekinci, Elmira; Lindquist, Jacob; Lei, Wen; Yunker, Christopher; Vinothkumar, Vilvanathan; Rowbotham, Rachelle; Polin, Lisa; Snider, Natalie G.; Van Buren, Eric; Watza, Donovan; Back, Jessica B.; Chen, Wei; Mamdani, Hirva; Schwartz, Ann G.; Turchi, John J.; Bepler, Gerold; Patrick, Steve M.; Medicine, School of MedicineERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.Item A C-X-C Chemokine Receptor Type 2–Dominated Cross-talk between Tumor Cells and Macrophages Drives Gastric Cancer Metastasis(AACR, 2019-06) Zhou, Zhijun; Xia, Guanggai; Xiang, Zhen; Liu, Mingyang; Wei, Zhewei; Yan, Jie; Chen, Wei; Zhu, Jintao; Awasthi, Niranjan; Sun, Xiaotian; Fung, Kar-Ming; He, Yulong; Li, Min; Zhang, Changhua; Surgery, School of MedicinePurpose: C-X-C chemokine receptor type 2 (CXCR2) is a key regulator that drives immune suppression and inflammation in tumor microenvironment. CXCR2-targeted therapy has shown promising results in several solid tumors. However, the underlying mechanism of CXCR2-mediated cross-talk between gastric cancer cells and macrophages still remains unclear. Experimental Design: The expression of CXCR2 and its ligands in 155 human gastric cancer tissues was analyzed via immunohistochemistry, and the correlations with clinical characteristics were evaluated. A coculture system was established, and functional assays, including ELISA, transwell, cell viability assay, and qPCR, were performed to determine the role of the CXCR2 signaling axis in promoting gastric cancer growth and metastasis. A xenograft gastric cancer model and a lymph node metastasis model were established to study the function of CXCR2 in vivo. Results: CXCR2 expression is associated with the prognosis of patients with gastric cancer (P = 0.002). Of all the CXCR2 ligands, CXCL1 and CXCL5 can significantly promote migration of gastric cancer cells. Macrophages are the major sources of CXCL1 and CXCL5 in the gastric cancer microenvironment, and promote migration of gastric cancer cells through activating a CXCR2/STAT3 feed-forward loop. Gastric cancer cells secrete TNF-α to induce release of CXCL1 and CXCL5 from macrophages. Inhibiting CXCR2 pathway of gastric cancer cells can suppress migration and metastasis of gastric cancer in vitro and in vivo. Conclusions: Our study suggested a previously uncharacterized mechanism through which gastric cancer cells interact with macrophages to promote tumor growth and metastasis, suggesting that CXCR2 may serve as a promising therapeutic target to treat gastric cancer.Item A Comparison Of Faculty Evaluation Systems Between China And Canada(Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, 2003) Brook, Paula A.; Chen, Wei; Luo, QiThis paper discusses characteristics between two different universities in different countries in terms of the teaching evaluation systems. A brief background to the Chinese institution is offered to help set the context for comparison. The Canadian University is a typical large, urban, public research university located in Western Canada. The paper analyzes commonalities and differences in faculty evaluation and suggests that each university can learn and/or adopt some improvement from the other.Item Identification of potential key genes associated with severe pneumonia using mRNA-seq(Spandidos, 2018-08) Feng, Cong; Huang, He; Huang, Sai; Zhai, Yong-Zhi; Dong, Jing; Chen, Li; Huang, Zhi; Zhou, Xuan; Li, Bei; Wang, Li-Li; Chen, Wei; Lv, Fa-Qin; Li, Tan-Shi; Electrical and Computer Engineering, School of Engineering and TechnologyThis study aimed to identify the potential key genes associated with severe pneumonia using mRNA-seq. Nine peripheral blood samples from patients with severe pneumonia alone (SP group, n=3) and severe pneumonia accompanied with chronic obstructive pulmonary disease (COPD; CSP group, n=3), as well as volunteers without pneumonia (control group, n=3) underwent mRNA-seq. Based on the sequencing data, differentially expressed genes (DEGs) were identified by Limma package. Following the pathway enrichment analysis of DEGs, the genes that were differentially expressed in the SP and CSP groups were selected for pathway enrichment analysis and coexpression analysis. In addition, potential genes related to pneumonia were identified based on the information in the Comparative Toxicogenomics Database. In total, 645 and 528 DEGs were identified in the SP and CSP groups, respectively, compared with the normal controls. Among these DEGs, 88 upregulated genes and 80 downregulated genes were common between the two groups. The functions of the common DEGs were similar to those of the DEGs in the SP group. In the coexpression network, the commonly downregulated genes (including ND1, ND3, ND4L, and ND6) and the commonly upregulated genes (including TSPY6P and CDY10P) exhibited a higher degree. In addition, 131 DEGs (including ND1, ND3, ND6, MIR449A and TAS2R43) were predicted to be potential pneumonia-related genes. In conclusion, the present study demonstrated that the common DEGs may be associated with the progression of severe pneumonia.Item Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition(Nature Publishing Group, 2015-06) Chen, Lili; Chen, Wei; Mysliwski, Maria; Serio, Justin; Ropa, James; Abulwerdi, Fardokht A.; Chan, Rebecca J.; Patel, Jay P.; Tallman, Martin S.; Paietta, Elisabeth; Melnick, Ari; Levine, Ross L.; Abdel-Wahab, Omar; Nikolovska-Coleska, Zaneta; Muntean, Andrew G.; Department of Pediatrics, IU School of MedicinePTPN11 encodes the Shp2 non-receptor protein-tyrosine phosphatase implicated in several signaling pathways. Activating mutations in Shp2 are commonly associated with juvenile myelomonocytic leukemia but are not as well defined in other neoplasms. Here we report that Shp2 mutations occur in human acute myeloid leukemia (AML) at a rate of 6.6% (6/91) in the ECOG E1900 data set. We examined the role of mutated Shp2 in leukemias harboring MLL translocations, which co-occur in human AML. The hyperactive Shp2E76K mutant, commonly observed in leukemia patients, significantly accelerated MLL-AF9-mediated leukemogenesis in vivo. Shp2E76K increased leukemic stem cell frequency and affords MLL-AF9 leukemic cells IL3 cytokine hypersensitivity. As Shp2 is reported to regulate anti-apoptotic genes, we investigated Bcl2, Bcl-xL and Mcl1 expression in MLL-AF9 leukemic cells with and without Shp2E76K. Although the Bcl2 family of genes was upregulated in Shp2E76K cells, Mcl1 showed the highest upregulation in MLL-AF9 cells in response to Shp2E76K. Indeed, expression of Mcl1 in MLL-AF9 cells phenocopies expression of Shp2E76K, suggesting Shp2 mutations cooperate through activation of anti-apoptotic genes. Finally, we show Shp2E76K mutations reduce sensitivity of AML cells to small-molecule-mediated Mcl1 inhibition, suggesting reduced efficacy of drugs targeting MCL1 in patients with hyperactive Shp2.Item Nasal Epithelium Transcriptomics Predict Clinical Response to Elexacaftor/Tezacaftor/Ivacaftor(American Thoracic Society, 2024) Yue, Molin; Weiner, Daniel J.; Gaietto, Kristina M.; Rosser, Franziska J.; Qoyawayma, Christopher M.; Manni, Michelle L.; Myerburg, Michael M.; Pilewski, Joseph M.; Celedón, Juan C.; Chen, Wei; Forno, Erick; Pediatrics, School of MedicineElexacaftor/tezacaftor/ivacaftor (ETI) has had a substantial positive impact for people living with cystic fibrosis (pwCF). However, there can be substantial variability in efficacy, and we lack adequate biomarkers to predict individual response. We thus aimed to identify transcriptomic profiles in nasal respiratory epithelium that predict clinical response to ETI treatment. We obtained nasal epithelial samples from pwCF before ETI initiation and performed a transcriptome-wide analysis of baseline gene expression to predict changes in forced expiratory volume in 1 second (ΔFEV1), year's best FEV1 (ΔybFEV1), and body mass index (ΔBMI). Using the top differentially expressed genes, we generated transcriptomic risk scores (TRSs) and evaluated their predictive performance. The study included 40 pwCF ≥6 years of age (mean, 27.7 [SD, 15.1] years; 40% female). After ETI initiation, FEV1 improved by ≥5% in 22 (61.1%) participants, and ybFEV1 improved by ≥5% in 19 (50%). TRSs were constructed using top overexpressed and underexpressed genes for each outcome. Adding the ΔFEV1 TRS to a model with age, sex, and baseline FEV1 increased the area under the receiver operating characteristic curve (AUC) from 0.41 to 0.88, the ΔybFEV1 TRS increased the AUC from 0.51 to 0.88, and the ΔBMI TRS increased the AUC from 0.46 to 0.92. Average accuracy was thus ∼85% in predicting the response to the three outcomes. Results were similar in models further adjusted for F508del zygosity and previous CFTR modulator use. In conclusion, we identified nasal epithelial transcriptomic profiles that help accurately predict changes in FEV1 and BMI with ETI treatment. These novel TRSs could serve as predictive biomarkers for clinical response to modulator treatment in pwCF.Item Role of Proinsulin Self-Association in Mutant INS Gene–Induced Diabetes of Youth(American Diabetes Association, 2020-05) Sun, Jinhong; Xiong, Yi; Li, Xin; Haataja, Leena; Chen, Wei; Mir, Saiful A.; Lv, Li; Madley, Rachel; Larkin, Dennis; Anjum, Arfah; Dhayalan, Balamurugan; Rege, Nischay; Wickramasinghe, Nalinda P.; Weiss, Michael A.; Itkin-Ansari, Pamela; Kaufman, Randal J.; Ostrov, David A.; Arvan, Peter; Liu, Ming; Biochemistry and Molecular Biology, School of MedicineAbnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.Item A second-order maximum entropy model predicts correlated network states, but not their evolution over time(Springer (Biomed Central Ltd.), 2007-07-06) Tang, Aonan; Hobbs, Jon; Chen, Wei; Jackson, David; Smith, Jodi L; Patel, Hema; Beggs, John M; Department of Neurological Surgery, IU School of Medicine