- Browse by Author
Browsing by Author "Chen, Minghan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item SMGR: a joint statistical method for integrative analysis of single-cell multi-omics data(Oxford University Press, 2022-07-27) Song, Qianqian; Zhu, Xuewei; Jin, Lingtao; Chen, Minghan; Zhang, Wei; Su, Jing; Biostatistics and Health Data Science, School of MedicineUnravelling the regulatory programs from single-cell multi-omics data has long been one of the major challenges in genomics, especially in the current emerging single-cell field. Currently there is a huge gap between fast-growing single-cell multi-omics data and effective methods for the integrative analysis of these inherent sparse and heterogeneous data. In this study, we have developed a novel method, Single-cell Multi-omics Gene co-Regulatory algorithm (SMGR), to detect coherent functional regulatory signals and target genes from the joint single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) data obtained from different samples. Given that scRNA-seq and scATAC-seq data can be captured by zero-inflated Negative Binomial distribution, we utilize a generalized linear regression model to identify the latent representation of consistently expressed genes and peaks, thus enables the identification of co-regulatory programs and the elucidation of regulating mechanisms. Results from both simulation and experimental data demonstrate that SMGR outperforms the existing methods with considerably improved accuracy. To illustrate the biological insights of SMGR, we apply SMGR to mixed-phenotype acute leukemia (MPAL) and identify the MPAL-specific regulatory program with significant peak-gene links, which greatly enhance our understanding of the regulatory mechanisms and potential targets of this complex tumor.Item Uncovering the dynamic effects of DEX treatment on lung cancer by integrating bioinformatic inference and multiscale modeling of scRNA-seq and proteomics data(Elsevier, 2022) Chen, Minghan; Xu, Chunrui; Xu, Ziang; He, Wei; Zhang, Haorui; Su, Jing; Song, Qianqian; Biostatistics, School of Public HealthLung cancer is one of the leading causes of cancer-related death, with a five-year survival rate of 18%. It is a priority for us to understand the underlying mechanisms affecting lung cancer therapeutics’ implementation and effectiveness. In this study, we combine the power of Bioinformatics and Systems Biology to comprehensively uncover functional and signaling pathways of drug treatment using bioinformatics inference and multiscale modeling of both scRNA-seq data and proteomics data. Based on a time series of lung adenocarcinoma derived A549 cells after DEX treatment, we first identified the differentially expressed genes (DEGs) in those lung cancer cells. Through the interrogation of regulatory network of those DEGs, we identified key hub genes including TGFβ, MYC, and SMAD3 varied underlie DEX treatment. Further gene set enrichment analysis revealed the TGFβ signaling pathway as the top enriched term. Those genes involved in the TGFβ pathway and their crosstalk with the ERBB pathway presented a strong survival prognosis in clinical lung cancer samples. With the basis of biological validation and literature-based curation, a multiscale model of tumor regulation centered on both TGFβ-induced and ERBB-amplified signaling pathways was developed to characterize the dynamic effects of DEX therapy on lung cancer cells. Our simulation results were well matched to available data of SMAD2, FOXO3, TGFβ1, and TGFβR1 over the time course. Moreover, we provided predictions of different doses to illustrate the trend and therapeutic potential of DEX treatment. The innovative and cross-disciplinary approach can be further applied to other computational studies in tumorigenesis and oncotherapy. We released the approach as a user-friendly tool named BIMM (Bioinformatic Inference and Multiscale Modeling), with all the key features available at https://github.com/chenm19/BIMM.