- Browse by Author
Browsing by Author "Chen, Jie"
Now showing 1 - 10 of 94
Results Per Page
Sort Options
Item A Comparison of the Ligation Torque Expression of a Ribbonwise Bracket–Archwire Combination and a Conventional Combination: A Primary Study(Hindawi, 2022-09-28) Lin, Bin; Jiang, Feifei; Chen, Jie; Liang, Jiaxing; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyObjective: To assess the effect of the third-order mechanics of a new ribbonwise bracket-archwire combination using an orthodontic torque simulator. Material and Methods. An orthodontic torque simulator was used to measure the third-order moment of a maxillary central incisor as it changed from a neutral position to a 40° rotation in 1° increment. A new ribbonwise bracket (Xinya, China) was compared with a conventional ligation bracket (American Orthodontic, U.S.A.). The effects of different archwire sizes (i.e., 0.017″ × 0.025″ and 0.019″ × 0.025″) and materials (i.e., nickel-titanium, titanium-molybdenum alloy, and stainless steel) were analyzed. Paired sample t-tests were conducted to compare the moments between the two bracket types corresponding to each of the archwires. The effects of the stiffness of the bracket-archwire complexes were also assessed. Results: Statistically significant differences (P=0.05) between the moments from the two brackets were found. The ribbonwise bracket-archwire complex generated larger moments when the rotation angle was lower than 30°. The ribbonwise brackets produced moments that could reach a threshold of 5 Nmm more quickly as the angle was increased. The higher the stiffness of the complex, the larger the moment. Conclusion: The ribbonwise bracket-archwire complex reached the moment threshold limits earlier than the conventional complex. When the rotation angle is less than 30°, the ribbonwise bracket-archwire complex generated a greater torque moment in comparison with the conventional complex.Item A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis(Elsevier, 2022-08-16) Wang, Xiaofang; Ma, Yufei; Chen, Jie; Liu, Yujiao; Liu, Guangliang; Wang, Pengtao; Wang, Bo; Taketo, Makoto M.; Bellido, Teresita; Tu, Xiaolin; Anatomy, Cell Biology and Physiology, School of MedicineCell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/β-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers β3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application.Item Accurate location of tumor in head and neck cancer radiotherapy treatment with respect to machine isocentre(2017-05) Tangirala, Deepak Kumar; Razban, Ali; Chen, Jie; Tovar, AndresRadiation Therapy has been one of the most common techniques to treat various types of cancers, in particular is Head and Neck Cancer (HNC) which accounts for three percent of all cancers in the United States. During the treatment procedure, the patient is immobilized using immobilization devices such as the full head face mask, bite blocks, stereotactic frame, etc. to get accurate location of tumor. The disadvantage of these devices is that they are very uncomfortable to the patient especially people suffering from Post-Traumatic Stress Disorder (PTSD) and claustrophobia who cannot wear any confined masked system such as the full head mask or bite block during the treatment procedure. To mitigate this problem, there has been a lot of research in modifying such immobilizing devices without neglecting the accurate location of tumor. To this end, the research presented in this thesis focuses on developing a mask less system with accurately locating the position of tumor using the technique of coordinate transformation at the same time fulfilling the three important characteristics: • Comfort • Accuracy • Low price Such a system is comfortable to the patient because no confining mask system is used and we choose minimal contact points on the patient for fixing the patient. Traditionally, such type of cancer treatment is carried out in two stages: Diagnosis stage, which identifies the location of the tumor and the external markers and the Treatment stage where the tumor is treated with immobilization device being common in both the stages. In the new system, the immobilization devices vary at the two stages. The head position is monitored by using pressure sensor assembly where spring and pressure sensor setup detects the amount and direction of head deviation. We also prepare a customized 3D printed nose bridge part for extra referencing in the treatment room. Also, it is important that we use material for our immobilization devices which does not contain any metal and MRI compatible. Once the patient lies down on the treatment couch and is immobilized using the immobilization devices, then tumor location is calculated using the theory of coordinate transformation and transformation matrix in the Diagnosis and Treatment Stage. To validate the system, simulation of immobilization devices used in the new design was carried out using ANSYS Workbench 15.0 and LS-Dyna software’s Explicit Dynamics method. The simulation for the head-fixing device showed a deflection of ±0.1974 mm with respect to machine isocenter with a load of 60 N, which is lower than the customer requirement of ±3 mm with respect to machine isocenter of head deviation. The material used for the external markers for patient positioning was selected to be polyetheretherketone (PEEK) which is a radiolucent and widely used MRI compatible material. The system also takes into consideration the effect of weight loss, which is one of the drawbacks of the current systems. Although still in the development stage, this mask less system holds to be the next new variety of immobilization devices that are comfortable to the patient and less expensive to be implemented in future cancer treatment practices.Item Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression(Elsevier, 2021) Eisa, Nada H.; Sudharsan, Periyasamy T.; Herrero, Sergio Mas; Herberg, Samuel A.; Volkman, Brian F.; Aguilar-Pérez, Alexandra; Kondrikov, Dmitry; Elmansi, Ahmed M.; Reitman, Charles; Shi, Xingming; Fulzele, Sadanand; McGee-Lawrence, Meghan E.; Isales, Carlos M.; Hamrick, Mark W.; Johnson, Maribeth H.; Chen, Jie; Hill, William D.; Anatomy, Cell Biology and Physiology, School of MedicineAge-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.Item Air Compressor Load Forecasting using Artificial Neural Network(Elsevier, 2021-04) Wu, Da-Chun; Bahrami Asl, Babak; Razban, Ali; Chen, Jie; Mechanical and Energy Engineering, School of Engineering and TechnologyAir compressor systems are responsible for approximately 10% of the electricity consumed in United States and European Union industry. As many researches have proven the effectiveness of using Artificial Neural Network in air compressor performance prediction, there is still a need to forecast the air compressor electrical load profile. The objective of this study is to predict compressed air systems' electrical load profile, which is valuable to industry practitioners as well as software providers in developing better practice and tools for load management and look-ahead scheduling programs. Two artificial neural networks, Two-Layer Feed-Forward Neural Network and Long Short-Term Memory were used to predict an air compressors electrical load. Compressors with three different control mechanisms are evaluated with a total number of 11,874 observations. The forecasts were validated using out-of-sample datasets with 5-fold cross-validation. Models produced average coefficient of determination values from 0.24 to 0.94, average root-mean-square errors from 0.05 kW - 5.83 kW, and mean absolute scaled errors from 0.20 to 1.33. The results indicate that both artificial neural networks yield good results for compressors using variable speed drive (average R2 = 0.8 and no naïve forecasting), only the long short-term memory model gives acceptable results for compressors using on/off control (average R2 = 0.82 and no naïve forecasting), and no satisfactory results are obtained for load/unload type air compressors (models constituting naïve forecasting).Item An analytical approach to 3D orthodontic load systems(The Angle Orthodontist, 2014-09) Katona, Thomas R.; Isikbay, Serkis C.; Chen, Jie; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryOBJECTIVE: To present and demonstrate a pseudo three-dimensional (3D) analytical approach for the characterization of orthodontic load (force and moment) systems. MATERIALS AND METHODS: Previously measured 3D load systems were evaluated and compared using the traditional two-dimensional (2D) plane approach and the newly proposed vector method. RESULTS: Although both methods demonstrated that the loop designs were not ideal for translatory space closure, they did so for entirely different and conflicting reasons. CONCLUSIONS: The traditional 2D approach to the analysis of 3D load systems is flawed, but the established 2D orthodontic concepts can be substantially preserved and adapted to 3D with the use of a modified coordinate system that is aligned with the desired tooth translation.Item Analyzing Compressed Air Demand Trends to Develop a Method to Calculate Leaks in a Compressed Air Line Using Time Series Pressure Measurements(2022-05) Daniel, Ebin John; Razban, Ali; Goodman, David; Chen, JieCompressed air is a powerful source of stored energy and is used in a variety of applications varying from painting to pressing, making it a versatile tool for manufacturers. Due to the high cost and energy consumption associated with producing compressed air and it’s use within industrial manufacturing, it is often referred to as a fourth utility behind electricity, natural gas, and water. This is the reason why air compressors and associated equipment are often the focus for improvements in the eyes of manufacturing plant managers. As compressed air can be used in multiple ways, the methods used to extract and transfer the energy from this source vary as well. Compressed air can flow through different types of piping, such as aluminum, Polyvinyl Chloride (PVC), rubber, etc. with varying hydraulic diameters, and through different fittings such as 90-degree elbows, T-junctions, valves, etc. which can cause one of the major concerns related to managing the energy consumption of an air compressor, and that is the waste of air through leaks. Air leaks make up a considerable portion of the energy that is wasted in a compressed air system, as they cause a multitude of problems that the compressor will have to make up for to maintain the steady operation of the pneumatic devices on the manufacturing floor that rely on compressed air for their application. When air leaks are formed within the compressed air piping network, they act as continuous consumers and cause not only the siphoning off of said compressed air, put also reduce the pressure that is needed within the pipes. The air compressors will have to work harder to compensate for the losses in the pressure and the amount of air itself, causing an overconsumption of energy and power. Overworking the air compressor also causes the internal equipment to be stretched beyond its capabilities, especially if they are already running at full loads, reducing their total lifespans considerably. In addition, if there are multiple leaks close to the pneumatic devices on the manufacturing floor, the immediate loss in pressure and air can cause the devices to operate inefficiently and thus cause a reduction in production. This will all cumulatively impact the manufacturer considerably when it comes to energy consumption and profits. There are multiple methods of air leak detection and accounting that currently exist so as to understand their impact on the compressed air systems. The methods are usually conducted when the air compressors are running but during the time when there is no, or minimal, active consumption of the air by the pneumatic devices on the manufacturing floor. This time period is usually called non-production hours and generally occur during breaks or between employee shift changes. This time is specifically chosen so that the only air consumption within the piping is that of the leaks and thus, the majority of the energy and power consumed during this time is noted to be used to feed the air leaks. The collected data is then used to extrapolate and calculate the energy and power consumed by these leaks for the rest of the year. There are, however, a few problems that arise when using such a method to understand the effects of the leaks in the system throughout the year. One of the issues is that it is assumed that the air and pressure lost through the found leaks are constant even during the production hours i.e. the hours that there is active air consumption by the pneumatic devices on the floor, which may not be the case due to the increased air flow rates and varying pressure within the line which can cause an increase in the amount of air lost through the same orifices that was initially detected. Another challenge that arises with using only the data collected during a single non-production time period is that there may be additional air leaks that may be created later on, and the energy and power lost due to the newer air leaks would remain unaccounted for. As the initial estimates will not include the additional losses, the effects of the air leaks may be underestimated by the plant managers. To combat said issues, a continuous method of air leak analyses will be required so as to monitor the air compressors’ efficiency in relation to the air leaks in real time. By studying a model that includes both the production, and non-production hours when accounting for the leaks, it was observed that there was a 50.33% increase in the energy losses, and a 82.90% increase in the demand losses that were estimated when the effects of the air leaks were observed continuously and in real time. A real time monitoring system can provide an in-depth understanding of the compressed air system and its efficiency. Managing leaks within a compressed air system can be challenging especially when the amount of energy wasted through these leaks are unaccounted for. The main goal of this research was to find a nonintrusive way to calculate the amount of air as well as energy lost due to these leaks using time series pressure measurements. Previous studies have shown a strong relationship between the pressure difference, and the use of air within pneumatic lines, this correlation along with other factors has been exploited in this research to find a novel and viable method of leak accounting to develop a Continuous Air Leak Monitoring (CALM) system.Item ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand(Elsevier, 2018-07) Wu, Da-Chun; Amini, Amin; Razban, Ali; Chen, Jie; Mechanical Engineering, School of Engineering and TechnologyThis paper proposes an innovative algorithm for predicting short-term electrical maximum demand by using historical demand data. The ability to recognize in peak demand pattern for commercial or industrial customers would propose numerous direct and indirect benefits to the customers and utility providers in terms of demand reduction, cost control, and system stability. Prior works in electrical maximum demand forecasting have been mainly focused on seasonal effects, which is not a feasible approach for industrial manufacturing facilities in short-term load forecasting. The proposed algorithm, denoted as the Adaptive Rate of Change (ARC), determines the logarithmic rate-of-change in load profile prior to a peak by postulating the demand curve as a stochastic, mean-reverting process. The rationale behind this analysis, is that the energy efficient program requires not only demand estimation but also to warn the user of imminent maximum peak occurrence. This paper analyzes demand trend data and incorporates stochastic model and mean reverting half-life to develop an electrical maximum demand forecasting algorithm, which is statistically evaluated by cross-table and F-score for three different manufacturing facilities. The aggregate results show an overall accuracy of 0.91 and a F-score of 0.43, which indicates that the algorithm is effective predicting peak demand in predicting peak demand.Item Benchmarking Tool Development for Commercial Buildings' Energy Consumption Using Machine Learning(2024-05) Hosseini, Paniz; Razban, Ali; Chen, Jie; Goodman, DavidThis thesis investigates approaches to classify and anticipate the energy consumption of commercial office buildings using external and performance benchmarking to reduce the energy consumption. External benchmarking in the context of building energy consumption considers the influence of climate zones that significantly impact a building's energy needs. Performance benchmarking recognizes that different types of commercial buildings have distinct energy consumption patterns. Benchmarks are established separately for each building type to provide relevant comparisons. The first part of this thesis is about providing a benchmarking baseline for buildings to show their consumption levels. This involves simulating the buildings based on standards and developing a model based on real-time results. Software tools like Open Studio and Energy Plus were utilized to simulate buildings representative of different-sized structures to organize the benchmark energy consumption baseline. These simulations accounted for two opposing climate zones—one cool and humid and one hot and dry. To ensure the authenticity of the simulation, details, which are the building envelope, operational hours, and HVAC systems, were matched with ASHRAE standards. Secondly, the neural network machine learning model is needed to predict the consumption of the buildings based on the trend data came out of simulation part, by training a comprehensive set of environmental characteristics, including ambient temperature, relative humidity, solar radiation, wind speed, and the specific HVAC (Heating, Ventilation, and Air Conditioning) load data for both heating and cooling of the building. The model's exceptional accuracy rating of 99.54% attained across all, which comes from the accuracy of training, validation, and test about 99.6%, 99.12%, and 99.42%, respectively, and shows the accuracy of the predicted energy consumption of the building. The validation check test confirms that the achieved accuracy represents the optimal performance of the model. A parametric study is done to show the dependency of energy consumption on the input, including the weather data and size of the building, which comes from the output data of machine learning, revealing the reliability of the trained model. Establishing a Graphic User Interface (GUI) enhances accessibility and interaction for users. In this thesis, we have successfully developed a tool that predicts the energy consumption of office buildings with an impressive accuracy of 99.54%. Our investigation shows that temperature, humidity, solar radiation, wind speed, and the building's size have varying impacts on energy use. Wind speed is the least influential component for low-rise buildings but can have a more substantial effect on high-rise structures.Item Bone Remodeling and Strain Variation Following Altered Mandibular Condyle Loading in Retired Breeder Rabbits(1993) Puntillo, Anthony M.; Garetto, Lawrence P.; Roberts, W. Eugene; Arbuckle, Gordon R.; Chen, Jie; Burr, David B.Several investigators have demonstrated modeling of the mandibular condyle foil following a change in load. A recent study evaluated the effect of age on the ability of the condyle to adapt to such a change. The present study explored the early changes in the mandibular condyles of retired breeder rabbits following an alteration in load, and attempted to quantify this load. Twelve female retired breeder New Zealand white rabbits were divided into four equal groups. Under general anesthesia strain gauges were placed on the lateral inferior body of the mandible bilaterally in two of the groups. Two days post-surgery acrylic splints were placed on the anterior teeth (resulting in a posterior open bite) of one the strain gauge groups and one group that did not receive strain gauges. The splints were maintained for 26 days. A control group received neither strain gauges nor splints. Intravital bone labels were administered to all groups to allow for histomorphometric analysis of condylar modeling and remodeling. In addition, principal strain measurements were recorded pre- and post-splint placement. The histomorphometric findings revealed a significant (p<.03) decrease in the subcondylar space of animals that received splints. Splinted animals also showed a significant increase in labeled surface area (p<.02) and in volume percent label (p<.05) of the trabeculae in the condylar neck region. In addition, surgical placement of the strain gauges significantly (p<.05) decreased the labeling of the periosteal surface in the neck region. The strain gauges proved functional in most rabbits for only a few days and registered large variations and no discernible differences in average maximum microstrain, and average change in microstrain. It was concluded from these results that an incisal prematurity (causing a posterior openbite), 26 days in duration, caused an increase functional load on the condyle. This load resulted in an increase in trabecular label and decrease in porosity of the subchondral plate. The decreased subcondylar space is possibly an indication of stiffening in this region. A stiffening of this nature has been suggested in previous studies to be a precursor to osteoarthritic degeneration.