Benchmarking Tool Development for Commercial Buildings' Energy Consumption Using Machine Learning

Date
2024-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.M.E.
Degree Year
2024
Department
Mechanical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This thesis investigates approaches to classify and anticipate the energy consumption of commercial office buildings using external and performance benchmarking to reduce the energy consumption. External benchmarking in the context of building energy consumption considers the influence of climate zones that significantly impact a building's energy needs. Performance benchmarking recognizes that different types of commercial buildings have distinct energy consumption patterns. Benchmarks are established separately for each building type to provide relevant comparisons. The first part of this thesis is about providing a benchmarking baseline for buildings to show their consumption levels. This involves simulating the buildings based on standards and developing a model based on real-time results. Software tools like Open Studio and Energy Plus were utilized to simulate buildings representative of different-sized structures to organize the benchmark energy consumption baseline. These simulations accounted for two opposing climate zones—one cool and humid and one hot and dry. To ensure the authenticity of the simulation, details, which are the building envelope, operational hours, and HVAC systems, were matched with ASHRAE standards. Secondly, the neural network machine learning model is needed to predict the consumption of the buildings based on the trend data came out of simulation part, by training a comprehensive set of environmental characteristics, including ambient temperature, relative humidity, solar radiation, wind speed, and the specific HVAC (Heating, Ventilation, and Air Conditioning) load data for both heating and cooling of the building. The model's exceptional accuracy rating of 99.54% attained across all, which comes from the accuracy of training, validation, and test about 99.6%, 99.12%, and 99.42%, respectively, and shows the accuracy of the predicted energy consumption of the building. The validation check test confirms that the achieved accuracy represents the optimal performance of the model. A parametric study is done to show the dependency of energy consumption on the input, including the weather data and size of the building, which comes from the output data of machine learning, revealing the reliability of the trained model. Establishing a Graphic User Interface (GUI) enhances accessibility and interaction for users. In this thesis, we have successfully developed a tool that predicts the energy consumption of office buildings with an impressive accuracy of 99.54%. Our investigation shows that temperature, humidity, solar radiation, wind speed, and the building's size have varying impacts on energy use. Wind speed is the least influential component for low-rise buildings but can have a more substantial effect on high-rise structures.

Description
IUPUI
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}