- Browse by Author
Browsing by Author "Casali, Brad T."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item INPP5D expression is associated with risk for Alzheimer’s disease and induced by plaque-associated microglia(Elsevier, 2021-06) Tsai, Andy P.; Bor-Chian, Lin Peter; Dong, Chuanpeng; Moutinho, Miguel; Casali, Brad T.; Liu, Yunlong; Lamb, Bruce T.; Landreth, Gary E.; Oblak, Adrian L.; Nho, Kwangsik; Medical and Molecular Genetics, School of MedicineAlzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, robust microgliosis, neuroinflammation, and neuronal loss. Genome-wide association studies recently highlighted a prominent role for microglia in late-onset AD (LOAD). Specifically, inositol polyphosphate-5-phosphatase (INPP5D), also known as SHIP1, is selectively expressed in brain microglia and has been reported to be associated with LOAD. Although INPP5D is likely a crucial player in AD pathophysiology, its role in disease onset and progression remains unclear. We performed differential gene expression analysis to investigate INPP5D expression in AD and its association with plaque density and microglial markers using transcriptomic (RNA-Seq) data from the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) cohort. We also performed quantitative real-time PCR, immunoblotting, and immunofluorescence assays to assess INPP5D expression in the 5xFAD amyloid mouse model. Differential gene expression analysis found that INPP5D expression was upregulated in LOAD and positively correlated with amyloid plaque density. In addition, in 5xFAD mice, Inpp5d expression increased as the disease progressed, and selectively in plaque-associated microglia. Increased Inpp5d expression levels in 5xFAD mice were abolished entirely by depleting microglia with the colony-stimulating factor receptor-1 antagonist PLX5622. Our findings show that INPP5D expression increases as AD progresses, predominantly in plaque-associated microglia. Importantly, we provide the first evidence that increased INPP5D expression might be a risk factor in AD, highlighting INPP5D as a potential therapeutic target. Moreover, we have shown that the 5xFAD mouse model is appropriate for studying INPP5D in AD.Item Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies(Elsevier, 2020-08) Casali, Brad T.; MacPherson, Kathryn P.; Reed-Geaghan, Erin G.; Landreth, Gary E.; Anatomy and Cell Biology, School of MedicineAlzheimer's disease (AD) is a prominent neurodegenerative disorder characterized by deposition of β-amyloid (Aβ)-containing extracellular plaques, accompanied by a microglial-mediated inflammatory response, that leads to cognitive decline. Microglia perform many disease-modifying functions such as phagocytosis of plaques, plaque compaction, and modulation of inflammation through the secretion of cytokines. Microglia are reliant upon colony-stimulating factor receptor-1 (CSF1R) activation for survival. In AD mouse models, chronic targeted depletion of microglia via CSF1R antagonism attenuates plaque formation in early disease but fails to alter plaque burden in late disease. It is unclear if acute depletion of microglia during the peak period of plaque deposition will alter disease pathogenesis, and if so, whether these effects are reversible upon microglial repopulation. To test this, we administered the CSF1R antagonist PLX5622 to the 5XFAD mouse model of AD at four months of age for approximately one month. In a subset of mice, the drug treatment was discontinued, and the mice were fed a control diet for an additional month. We evaluated plaque burden and composition, microgliosis, inflammatory marker expression, and neuritic dystrophy. In 5XFAD animals, CSF1R blockade for 28 days depleted microglia across brain regions by over 50%, suppressed microgliosis, and reduced plaque burden. In microglial-depleted AD animals, neuritic dystrophy was enhanced, and increased diffuse-like plaques and fewer compact-like plaques were observed. Removal of PLX5622 elicited microglial repopulation and subsequent plaque remodeling, resulting in more compact plaques predominating microglia-repopulated regions. We found that microglia limit diffuse plaques by maintaining compact-like plaque properties, thereby blocking the progression of neuritic dystrophy. Microglial repopulation reverses these effects. Collectively, we show that microglia are neuroprotective through maintenance of plaque compaction and morphologies during peak disease progression.Item Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease(BioMed Central, 2018-02-15) Casali, Brad T.; Reed-Geaghan, Erin G.; Landreth, Gary E.; Neurology, School of MedicineBACKGROUND: Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by pathological hallmarks of beta-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Treatment remains a clinical obstacle due to lack of effective therapeutics. Agonists targeting nuclear receptors, such as bexarotene, reversed cognitive deficits regardless of treatment duration and age in murine models of AD. While bexarotene demonstrated marked efficacy in decreasing plaque levels following short-term treatment, prolonged treatment did not modulate plaque burden. This suggested that plaques might reform in mice treated chronically with bexarotene and that cessation of bexarotene treatment before plaques reform might alter amyloid pathology, inflammation, and cognition in AD mice. METHODS: We utilized one-year-old APP/PS1 mice that were divided into two groups. We treated one group of mice for 2 weeks with bexarotene. The other group of mice was treated for 2 weeks with bexarotene followed by withdrawal of drug treatment for an additional 2 weeks. Cognition was evaluated using the novel-object recognition test either at the end of bexarotene treatment or the end of the withdrawal period. We then analyzed amyloid pathology and microgliosis at the conclusion of the study in both groups. RESULTS: Bexarotene treatment enhanced cognition in APP/PS1 mice similar to previous findings. Strikingly, we observed sustained cognitive improvements in mice in which bexarotene treatment was discontinued for 2 weeks. We observed a sustained reduction in microgliosis and plaque burden following drug withdrawal exclusively in the hippocampus. CONCLUSIONS: Our findings demonstrate that bexarotene selectively modifies aspects of neuroinflammation in a region-specific manner to reverse hippocampal-dependent cognitive deficits in AD mice and may provide insight to inform future studies with nuclear receptor agonists.Item PLCG2 is associated with the inflammatory response and is induced by amyloid plaques in Alzheimer's disease(Springer, 2022-02-18) Tsai, Andy P.; Dong, Chuanpeng; Lin, Peter Bor-Chian; Messenger, Evan J.; Casali, Brad T.; Moutinho, Miguel; Liu, Yunlong; Oblak, Adrian L.; Lamb, Bruce T.; Landreth, Gary E.; Bissel, Stephanie J.; Nho, Kwangsik; Medical and Molecular Genetics, School of MedicineBackground Alzheimer’s disease (AD) is characterized by robust microgliosis and phenotypic changes that accompany disease pathogenesis. Accumulating evidence from genetic studies suggests the importance of phospholipase C γ 2 (PLCG2) in late-onset AD (LOAD) pathophysiology. However, the role of PLCG2 in AD is still poorly understood. Methods Using bulk RNA-Seq (N=1249) data from the Accelerating Medicines Partnership-Alzheimer’s Disease Consortium (AMP-AD), we investigated whether PLCG2 expression increased in the brains of LOAD patients. We also evaluated the relationship between PLCG2 expression levels, amyloid plaque density, and expression levels of microglia specific markers (AIF1 and TMEM119). Finally, we investigated the longitudinal changes of PLCG2 expression in the 5xFAD mouse model of AD. To further understand the role of PLCG2 in different signaling pathways, differential gene expression and co-expression network analyses were performed using bulk RNA-Seq and microglial single-cell RNA-Seq data. To substantiate the human analyses, we performed differential gene expression analysis on wild-type (WT) and inactivated Plcg2 mice and used immunostaining to determine if the differentially expressed genes/pathways were altered by microglial cell coverage or morphology. Results We observed significant upregulation of PLCG2 expression in three brain regions of LOAD patients and significant positive correlation of PLCG2 expression with amyloid plaque density. These findings in the human brain were validated in the 5xFAD amyloid mouse model, which showed disease progression-dependent increases in Plcg2 expression associated with amyloid pathology. Of note, increased Plcg2 expression levels in 5xFAD mice were abolished by reducing microglia. Furthermore, using bulk RNA-Seq data, we performed differential expression analysis by comparing cognitively normal older adults (CN) with 75th percentile (high) and 25th percentile (low) PLCG2 gene expression levels to identify pathways related to inflammation and the inflammatory response. The findings in the human brain were validated by differential expression analyses between WT and plcg2 inactivated mice. PLCG2 co-expression network analysis of microglial single-cell RNA-Seq data identified pathways related to the inflammatory response including regulation of I-kappaB/NF-kappa B signaling and response to lipopolysaccharide. Conclusions Our results provide further evidence that PLCG2 plays an important role in AD pathophysiology and may be a potential target for microglia-targeted AD therapies.Item The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease(American Association for the Advancement of Science, 2022) Moutinho, Miguel; Puntambekar, Shweta S.; Tsai, Andy P.; Coronel, Israel; Lin, Peter B.; Casali, Brad T.; Martinez, Pablo; Oblak, Adrian L.; Lasagna-Reeves, Cristian A.; Lamb, Bruce T.; Landreth, Gary E.; Anatomy, Cell Biology and Physiology, School of MedicineIncreased dietary intake of niacin has been correlated with reduced risk of Alzheimer's disease (AD). Niacin serves as a high-affinity ligand for the receptor HCAR2 (GPR109A). In the brain, HCAR2 is expressed selectively by microglia and is robustly induced by amyloid pathology in AD. The genetic inactivation of Hcar2 in 5xFAD mice, a model of AD, results in impairment of the microglial response to amyloid deposition, including deficits in gene expression, proliferation, envelopment of amyloid plaques, and uptake of amyloid-β (Aβ), ultimately leading to exacerbation of amyloid burden, neuronal loss, and cognitive deficits. In contrast, activation of HCAR2 with an FDA-approved formulation of niacin (Niaspan) in 5xFAD mice leads to reduced plaque burden and neuronal dystrophy, attenuation of neuronal loss, and rescue of working memory deficits. These data provide direct evidence that HCAR2 is required for an efficient and neuroprotective response of microglia to amyloid pathology. Administration of Niaspan potentiates the HCAR2-mediated microglial protective response and consequently attenuates amyloid-induced pathology, suggesting that its use may be a promising therapeutic approach to AD that specifically targets the neuroimmune response.Item Therapeutic targeting of immunometabolism in Alzheimer's disease reveals a critical reliance on Hexokinase 2 dosage on microglial activation and disease progression(bioRxiv, 2023-11-15) Codocedo, Juan F.; Mera-Reina, Claudia; Lin, Peter Bor-Chian; Puntambekar, Shweta S.; Casali, Brad T.; Jury, Nur; Martinez, Pablo; Lasagna-Reeves, Cristian A.; Landreth, Gary E.; Anatomy, Cell Biology and Physiology, School of MedicineMicrogliosis and neuroinflammation are prominent features of Alzheimer's disease (AD). Disease-responsive microglia meet their increased energy demand by reprogramming metabolism, specifically, switching to favor glycolysis over oxidative phosphorylation. Thus, targeting of microglial immunometabolism might be of therapeutic benefit for treating AD, providing novel and often well understood immune pathways and their newly recognized actions in AD. We report that in the brains of 5xFAD mice and postmortem brains of AD patients, we found a significant increase in the levels of Hexokinase 2 (HK2), an enzyme that supports inflammatory responses by rapidly increasing glycolysis. Moreover, binding of HK2 to mitochondria has been reported to regulate inflammation by preventing mitochondrial dysfunction and NLRP3 inflammasome activation, suggesting that its inflammatory role extends beyond its glycolytic activity. Here we report, that HK2 antagonism selectively affects microglial phenotypes and disease progression in a gene-dose dependent manner. Paradoxically, complete loss of HK2 fails to improve AD progression by exacerbating inflammasome activity while its haploinsufficiency results in reduced pathology and improved cognition in the 5XFAD mice. We propose that the partial antagonism of HK2, is effective in slowed disease progression and inflammation through a non-metabolic mechanism associated with the modulation of NFKβ signaling, through its cytosolic target IKBα. The complete loss of HK2 affects additional inflammatory mechanisms associated to mitochondrial dysfunction.Item Therapeutic targeting of immunometabolism reveals a critical reliance on hexokinase 2 dosage for microglial activation and Alzheimer’s progression(Elsevier, 2024) Codocedo, Juan F.; Mera-Reina, Claudia; Lin, Peter Bor-Chian; Fallen, Paul B.; Puntambekar, Shweta S.; Casali, Brad T.; Jury-Garfe, Nur; Martinez, Pablo; Lasagna-Reeves, Cristian A.; Landreth, Gary E.; Anatomy, Cell Biology and Physiology, School of MedicineNeuroinflammation is a prominent feature of Alzheimer's disease (AD). Activated microglia undergo a reprogramming of cellular metabolism necessary to power their cellular activities during disease. Thus, selective targeting of microglial immunometabolism might be of therapeutic benefit for treating AD. In the AD brain, the levels of microglial hexokinase 2 (HK2), an enzyme that supports inflammatory responses by promoting glycolysis, are significantly increased. In addition, HK2 displays non-metabolic activities that extend its inflammatory role beyond glycolysis. The antagonism of HK2 affects microglial phenotypes and disease progression in a gene-dose-dependent manner. HK2 complete loss fails to improve pathology by exacerbating inflammation, while its haploinsufficiency reduces pathology in 5xFAD mice. We propose that the partial antagonism of HK2 is effective in slowing disease progression by modulating NF-κB signaling through its cytosolic target, IKBα. The complete loss of HK2 affects additional inflammatory mechanisms related to mitochondrial dysfunction.Item The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease(BMC, 2018-06-01) Cheng-Hathaway, Paul J.; Reed-Geaghan, Erin G.; Jay, Taylor R.; Casali, Brad T.; Bemiller, Shane M.; Puntambekar, Shweta S.; von Saucken, Victoria E.; Williams, Roxanne Y.; Karlo, J. Colleen; Moutinho, Miguel; Xu, Guixiang; Ransohoff, Richard M.; Lamb, Bruce T.; Landreth, Gary E.; Anatomy and Cell Biology, School of MedicineBACKGROUND: The R47H variant of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) confers greatly increased risk for Alzheimer's disease (AD), reflective of a central role for myeloid cells in neurodegeneration. Understanding how this variant confers AD risk promises to provide important insights into how myeloid cells contribute to AD pathogenesis and progression. METHODS: In order to investigate this mechanism, CRISPR/Cas9 was used to generate a mouse model of AD harboring one copy of the single nucleotide polymorphism (SNP) encoding the R47H variant in murine Trem2. TREM2 expression, myeloid cell responses to amyloid deposition, plaque burden, and neuritic dystrophy were assessed at 4 months of age. RESULTS: AD mice heterozygous for the Trem2 R47H allele exhibited reduced total Trem2 mRNA expression, reduced TREM2 expression around plaques, and reduced association of myeloid cells with plaques. These results were comparable to AD mice lacking one copy of Trem2. AD mice heterozygous for the Trem2 R47H allele also showed reduced myeloid cell responses to amyloid deposition, including a reduction in proliferation and a reduction in CD45 expression around plaques. Expression of the Trem2 R47H variant also reduced dense core plaque number but increased plaque-associated neuritic dystrophy. CONCLUSIONS: These data suggest that the AD-associated TREM2 R47H variant increases risk for AD by conferring a loss of TREM2 function and enhancing neuritic dystrophy around plaques.