- Browse by Author
Browsing by Author "Ben Miled, Zina"
Now showing 1 - 10 of 30
Results Per Page
Sort Options
Item 3-D Scene Reconstruction for Passive Ranging Using Depth from Defocus and Deep Learning(2019-08) Emerson, David R.; Christopher, Lauren A.; Ben Miled, Zina; King, Brian; Salama, PaulDepth estimation is increasingly becoming more important in computer vision. The requirement for autonomous systems to gauge their surroundings is of the utmost importance in order to avoid obstacles, preventing damage to itself and/or other systems or people. Depth measuring/estimation systems that use multiple cameras from multiple views can be expensive and extremely complex. And as these autonomous systems decrease in size and available power, the supporting sensors required to estimate depth must also shrink in size and power consumption. This research will concentrate on a single passive method known as Depth from Defocus (DfD), which uses an in-focus and out-of-focus image to infer the depth of objects in a scene. The major contribution of this research is the introduction of a new Deep Learning (DL) architecture to process the the in-focus and out-of-focus images to produce a depth map for the scene improving both speed and performance over a range of lighting conditions. Compared to the previous state-of-the-art multi-label graph cuts algorithms applied to the synthetically blurred dataset the DfD-Net produced a 34.30% improvement in the average Normalized Root Mean Square Error (NRMSE). Similarly the DfD-Net architecture produced a 76.69% improvement in the average Normalized Mean Absolute Error (NMAE). Only the Structural Similarity Index (SSIM) had a small average decrease of 2.68% when compared to the graph cuts algorithm. This slight reduction in the SSIM value is a result of the SSIM metric penalizing images that appear to be noisy. In some instances the DfD-Net output is mottled, which is interpreted as noise by the SSIM metric. This research introduces two methods of deep learning architecture optimization. The first method employs the use of a variant of the Particle Swarm Optimization (PSO) algorithm to improve the performance of the DfD-Net architecture. The PSO algorithm was able to find a combination of the number of convolutional filters, the size of the filters, the activation layers used, the use of a batch normalization layer between filters and the size of the input image used during training to produce a network architecture that resulted in an average NRMSE that was approximately 6.25% better than the baseline DfD-Net average NRMSE. This optimized architecture also resulted in an average NMAE that was 5.25% better than the baseline DfD-Net average NMAE. Only the SSIM metric did not see a gain in performance, dropping by 0.26% when compared to the baseline DfD-Net average SSIM value. The second method illustrates the use of a Self Organizing Map clustering method to reduce the number convolutional filters in the DfD-Net to reduce the overall run time of the architecture while still retaining the network performance exhibited prior to the reduction. This method produces a reduced DfD-Net architecture that has a run time decrease of between 14.91% and 44.85% depending on the hardware architecture that is running the network. The final reduced DfD-Net resulted in a network architecture that had an overall decrease in the average NRMSE value of approximately 3.4% when compared to the baseline, unaltered DfD-Net, mean NRMSE value. The NMAE and the SSIM results for the reduced architecture were 0.65% and 0.13% below the baseline results respectively. This illustrates that reducing the network architecture complexity does not necessarily reduce the reduction in performance. Finally, this research introduced a new, real world dataset that was captured using a camera and a voltage controlled microfluidic lens to capture the visual data and a 2-D scanning LIDAR to capture the ground truth data. The visual data consists of images captured at seven different exposure times and 17 discrete voltage steps per exposure time. The objects in this dataset were divided into four repeating scene patterns in which the same surfaces were used. These scenes were located between 1.5 and 2.5 meters from the camera and LIDAR. This was done so any of the deep learning algorithms tested would see the same texture at multiple depths and multiple blurs. The DfD-Net architecture was employed in two separate tests using the real world dataset. The first test was the synthetic blurring of the real world dataset and assessing the performance of the DfD-Net trained on the Middlebury dataset. The results of the real world dataset for the scenes that were between 1.5 and 2.2 meters from the camera the DfD-Net trained on the Middlebury dataset produced an average NRMSE, NMAE and SSIM value that exceeded the test results of the DfD-Net tested on the Middlebury test set. The second test conducted was the training and testing solely on the real world dataset. Analysis of the camera and lens behavior led to an optimal lens voltage step configuration of 141 and 129. Using this configuration, training the DfD-Net resulted in an average NRMSE, NMAE and SSIM of 0.0660, 0.0517 and 0.8028 with a standard deviation of 0.0173, 0.0186 and 0.0641 respectively.Item Automated Evaluation of Neurological Disorders Through Electronic Health Record Analysis(2024-08) Prince, Md Rakibul Islam; Ben Miled, Zina; El-Sharkawy, Mohamed A.; Zhang, QingxueNeurological disorders present a considerable challenge due to their variety and diagnostic complexity especially for older adults. Early prediction of the onset and ongoing assessment of the severity of these disease conditions can allow timely interventions. Currently, most of the assessment tools are time-consuming, costly, and not suitable for use in primary care. To reduce this burden, the present thesis introduces passive digital markers for different disease conditions that can effectively automate the severity assessment and risk prediction from different modalities of electronic health records (EHR). The focus of the first phase of the present study in on developing passive digital markers for the functional assessment of patients suffering from Bipolar disorder and Schizophrenia. The second phase of the study explores different architectures for passive digital markers that can predict patients at risk for dementia. The functional severity PDM uses only a single EHR modality, namely medical notes in order to assess the severity of the functioning of schizophrenia, bipolar type I, or mixed bipolar patients. In this case, the input of is a single medical note from the electronic medical record of the patient. This note is submitted to a hierarchical BERT model which classifies at-risk patients. A hierarchical attention mechanism is adopted because medical notes can exceed the maximum allowed number of tokens by most language models including BERT. The functional severity PDM follows three steps. First, a sentence-level embedding is produced for each sentence in the note using a token-level attention mechanism. Second, an embedding for the entire note is constructed using a sentence-level attention mechanism. Third, the final embedding is classified using a feed-forward neural network which estimates the impairment level of the patient. When used prior to the onset of the disease, this PDM is able to differentiate between severe and moderate functioning levels with an AUC of 76%. Disease-specific severity assessment PDMs are only applicable after the onset of the disease and have AUCs of nearly 85% for schizophrenia and bipolar patients. The dementia risk prediction PDM considers multiple EHR modalities including socio-demographic data, diagnosis codes and medical notes. Moreover, the observation period and prediction horizon are varied for a better understanding of the practical limitations of the model. This PDM is able to identify patients at risk of dementia with AUCs ranging from 70% to 92% as the observation period approaches the index date. The present study introduces methodologies for the automation of important clinical outcomes such as the assessment of the general functioning of psychiatric patients and the prediction of risk for dementia using only routine care data.Item Comparing Pso-Based Clustering Over Contextual Vector Embeddings to Modern Topic Modeling(2022-05) Miles, Samuel; Ben Miled, Zina; Salama, Paul; El-Sharkawy, MohamedEfficient topic modeling is needed to support applications that aim at identifying main themes from a collection of documents. In this thesis, a reduced vector embedding representation and particle swarm optimization (PSO) are combined to develop a topic modeling strategy that is able to identify representative themes from a large collection of documents. Documents are encoded using a reduced, contextual vector embedding from a general-purpose pre-trained language model (sBERT). A modified PSO algorithm (pPSO) that tracks particle fitness on a dimension-by-dimension basis is then applied to these embeddings to create clusters of related documents. The proposed methodology is demonstrated on three datasets across different domains. The first dataset consists of posts from the online health forum r/Cancer. The second dataset is a collection of NY Times abstracts and is used to compareItem Complex Vehicle Modeling: A Data Driven Approach(2019-12) Schoen, Alexander C.; Ben Miled, Zina; Dos Santos, Euzeli C.; King, Brian S.This thesis proposes an artificial neural network (NN) model to predict fuel consumption in heavy vehicles. The model uses predictors derived from vehicle speed, mass, and road grade. These variables are readily available from telematics devices that are becoming an integral part of connected vehicles. The model predictors are aggregated over a fixed distance traveled (i.e., window) instead of fixed time interval. It was found that 1km windows is most appropriate for the vocations studied in this thesis. Two vocations were studied, refuse and delivery trucks. The proposed NN model was compared to two traditional models. The first is a parametric model similar to one found in the literature. The second is a linear regression model that uses the same features developed for the NN model. The confidence level of the models using these three methods were calculated in order to evaluate the models variances. It was found that the NN models produce lower point-wise error. However, the stability of the models are not as high as regression models. In order to improve the variance of the NN models, an ensemble based on the average of 5-fold models was created. Finally, the confidence level of each model is analyzed in order to understand how much error is expected from each model. The mean training error was used to correct the ensemble predictions for five K-Fold models. The ensemble K-fold model predictions are more reliable than the single NN and has lower confidence interval than both the parametric and regression models.Item Deep Learning with Go(2020-05) Stinson, Derek L.; Ben Miled, Zina; King, Brian; Rizkalla, MaherCurrent research in deep learning is primarily focused on using Python as a support language. Go, an emerging language, that has many benefits including native support for concurrency has seen a rise in adoption over the past few years. However, this language is not widely used to develop learning models due to the lack of supporting libraries and frameworks for model development. In this thesis, the use of Go for the development of neural network models in general and convolution neural networks is explored. The proposed study is based on a Go-CUDA implementation of neural network models called GoCuNets. This implementation is then compared to a Go-CPU deep learning implementation that takes advantage of Go's built in concurrency called ConvNetGo. A comparison of these two implementations shows a significant performance gain when using GoCuNets compared to ConvNetGo.Item Design and Development of an Intelligent Online Personal Assistant in Social Learning Management Systems(2019-05) Hosseini Asanjan, Seyed Mahmood; King, Brian; Ben Miled, Zina; Jafari, AliOver the past decade, universities had a significant improvement in using online learning tools. A standard learning management system provides fundamental functionalities to satisfy the basic needs of its users. The new generation of learning management systems have introduced a novel system that provides social networking features. An unprecedented number of users use the social aspects of such platforms to create their profile, collaborate with other users, and find their desired career path. Nowadays there are many learning systems which provide learning materials, certificates, and course management systems. This allows us to utilize such information to help the students and the instructors in their academic life. The presented research work's primary goal is to focus on creating an intelligent personal assistant within the social learning systems. The proposed personal assistant has a human-like persona, learns about the users, and recommends useful and meaningful materials for them. The designed system offers a set of features for both institutions and members to achieve their goal within the learning system. It recommends jobs and friends for the users based on their profile. The proposed agent also prioritizes the messages and shows the most important message to the user. The developed software supports model-controller-view architecture and provides a set of RESTful APIs which allows the institutions to integrate the proposed intelligent agent with their learning system.Item The Design of an Oncology Knowledge Base from an Online Health Forum(2022-05) Ramadan, Omar; Ben Miled, Zina; Salama, Paul; Dos Santos, Euzeli CiprianoKnowledge base completion is an important task that allows scientists to reason over knowledge bases and discover new facts. In this thesis, a patient-centric knowledge base is designed and constructed using medical entities and relations extracted from the health forum r/cancer. The knowledge base stores information in binary relation triplets. It is enhanced with an is-a relation that is able to represent the hierarchical relationship between different medical entities. An enhanced Neural Tensor Network that utilizes the frequency of occurrence of relation triplets in the dataset is then developed to infer new facts from the enhanced knowledge base. The results show that when the enhanced inference model uses the enhanced knowledge base, a higher accuracy (73.2 %) and recall@10 (35.4%) are obtained. In addition, this thesis describes a methodology for knowledge base and associated inference model design that can be applied to other chronic diseases.Item Development and Temporal Validation of an Electronic Medical Record-Based Insomnia Prediction Model Using Data from a Statewide Health Information Exchange(MDPI, 2023-05-05) Holler, Emma; Chekani, Farid; Ai, Jizhou; Meng, Weilin; Khandker, Rezaul Karim; Ben Miled, Zina; Owora, Arthur; Dexter, Paul; Campbell, Noll; Solid, Craig; Boustani, Malaz; Electrical and Computer Engineering, School of Engineering and TechnologyThis study aimed to develop and temporally validate an electronic medical record (EMR)-based insomnia prediction model. In this nested case-control study, we analyzed EMR data from 2011–2018 obtained from a statewide health information exchange. The study sample included 19,843 insomnia cases and 19,843 controls matched by age, sex, and race. Models using different ML techniques were trained to predict insomnia using demographics, diagnosis, and medication order data from two surveillance periods: −1 to −365 days and −180 to −365 days before the first documentation of insomnia. Separate models were also trained with patient data from three time periods (2011–2013, 2011–2015, and 2011–2017). After selecting the best model, predictive performance was evaluated on holdout patients as well as patients from subsequent years to assess the temporal validity of the models. An extreme gradient boosting (XGBoost) model outperformed all other classifiers. XGboost models trained on 2011–2017 data from −1 to −365 and −180 to −365 days before index had AUCs of 0.80 (SD 0.005) and 0.70 (SD 0.006), respectively, on the holdout set. On patients with data from subsequent years, a drop of at most 4% in AUC is observed for all models, even when there is a five-year difference between the collection period of the training and the temporal validation data. The proposed EMR-based prediction models can be used to identify insomnia up to six months before clinical detection. These models may provide an inexpensive, scalable, and longitudinally viable method to screen for individuals at high risk of insomnia.Item Differential Learning for Outliers: A Case Study of Water Demand Prediction(MDPI, 2018-11) Shah, Setu; Ben Miled, Zina; Schaefer, Rebecca; Berube, Steve; Electrical and Computer Engineering, School of Engineering and TechnologyPredicting water demands is becoming increasingly critical because of the scarcity of this natural resource. In fact, the subject was the focus of numerous studies by a large number of researchers around the world. Several models have been proposed that are able to predict water demands using both statistical and machine learning techniques. These models have successfully identified features that can impact water demand trends for rural and metropolitan areas. However, while the above models, including recurrent network models proposed by the authors are able to predict normal water demands, most have difficulty estimating potential deviations from the norms. Outliers in water demand can be due to various reasons including high temperatures and voluntary or mandatory consumption restrictions by the water utility companies. Estimating these deviations is necessary, especially for water utility companies with a small service footprint, in order to efficiently plan water distribution. This paper proposes a differential learning model that can help model both over-consumption and under-consumption. The proposed differential model builds on a previously proposed recurrent neural network model that was successfully used to predict water demand in central Indiana.Item Digital detection of dementia (D3): a study protocol for a pragmatic cluster-randomized trial examining the application of patient-reported outcomes and passive clinical decision support systems(MDPI, 2022-10-11) Kleiman, Michael J.; Plewes, Abbi D.; Owora, Arthur; Grout, Randall W.; Dexter, Paul Richard; Fowler, Nicole R.; Galvin, James E.; Ben Miled, Zina; Boustani, Malaz; Medicine, School of MedicineBackground: Early detection of Alzheimer's disease and related dementias (ADRD) in a primary care setting is challenging due to time constraints and stigma. The implementation of scalable, sustainable, and patient-driven processes may improve early detection of ADRD; however, there are competing approaches; information may be obtained either directly from a patient (e.g., through a questionnaire) or passively using electronic health record (EHR) data. In this study, we aim to identify the benefit of a combined approach using a pragmatic cluster-randomized clinical trial. Methods: We have developed a Passive Digital Marker (PDM), based on machine learning algorithms applied to EHR data, and paired it with a patient-reported outcome (the Quick Dementia Rating Scale or QDRS) to rapidly share an identified risk of impairment to a patient's physician. Clinics in both south Florida and Indiana will be randomly assigned to one of three study arms: 1200 patients in each of the two populations will be administered either the PDM, the PDM with the QDRS, or neither, for a total of 7200 patients across all clinics and populations. Both incidence of ADRD diagnosis and acceptance into ADRD diagnostic work-up regimens is hypothesized to increase when patients are administered both the PDM and QDRS. Physicians performing the work-up regimens will be blind to the study arm of the patient. Discussion: This study aims to test the accuracy and effectiveness of the two scalable approaches (PDM and QDRS) for the early detection of ADRD among older adults attending primary care practices. The data obtained in this study may lead to national early detection and management program for ADRD as an efficient and beneficial method of reducing the current and future burden of ADRD, as well as improving the annual rate of newly documented ADRD in primary care practices.
- «
- 1 (current)
- 2
- 3
- »